An optimum 2-D DOA estimation algorithm with uniform circular array and its performance analysis

2018 ◽  
Vol 7 (3) ◽  
pp. 262-275
Author(s):  
Le Zuo ◽  
Jin Pan
2021 ◽  
Vol 11 (2) ◽  
pp. 467
Author(s):  
Chan-Bin Ko ◽  
Joon-Ho Lee

Direction finding has been extensively studied over the past decades and a number of algorithms have been developed. In direction finding, theoretic performance prediction is a fundamental problem. This paper addresses the performance analysis issue of interferometer-based 2D angle of arrival estimation using uniform circular array (UCA). We propose an analytic method for performance analysis of interferometer in the presence of Gaussian or uniform error in phase measurement of incident signal on each sensor. The analytic mean square error (MSE), which is approximately equal to the MSE of actual interferometer-based DOA estimation, is derived via Taylor expansion and approximation. The derived analytic MSE is useful for predicting how the MSE of the interferometer-based DOA estimation algorithm is dependent on the phase measurement error.


2017 ◽  
Vol 2017 ◽  
pp. 1-28 ◽  
Author(s):  
Yun-Seong Cho ◽  
Jeong-Min Seo ◽  
Joon-Ho Lee

We address the performance analysis of the maximum likelihood (ML) direction-of-arrival (DOA) estimation algorithm in the case of azimuth/elevation estimation of two incident signals using the uniform circular array (UCA). Based on the Taylor series expansion and approximation, we get explicit expressions of the root mean square errors (RMSEs) of the azimuths and elevations. The validity of the derived expressions is shown by comparing the analytic results with the simulation results. The derivation in this paper is further verified by illustrating the consistency of the analytic results with the Cramer-Rao lower bound (CRLB).


Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 276
Author(s):  
Yao Xie ◽  
Mo Huang ◽  
Yuanyuan Zhang ◽  
Tao Duan ◽  
Changyuan Wang

In conformal array radar, due to the directivity of antennas, the responses of the echo signals between different antennas are distinct, and some antennas cannot even receive the target echo signal. These phenomena significantly affect the accuracy of direction-of-arrival (DOA) estimation. To implement accurate DOA estimation in a conformal uniform circular array (UCA) composed of directional antennas, the two-stage fast DOA estimation algorithm is proposed. In the pre-processing stage, multi-target decoupling and target detection are mainly used to obtain the targets’ range bin indexes set; in the rough-precise DOA estimation stage, the amplitude and phase information of each antenna are used for rough DOA estimation and precise DOA estimation, respectively. Based on simulation and actual anechoic chamber radar experiments, and through quantitative analyses of the accuracy, validity and elapsed time of the two-stage fast DOA estimation algorithm compared with the directional antenna MUSIC (DA-MUSIC), sub-array MUSIC (S-MUSIC) and Capon-like algorithms, results indicate that the two-stage fast DOA estimation algorithm can rapidly and accurately estimate DOAs in a multi-target scenario without the range-angle pair-matching procedure. Lower computational complexity and superior estimation accuracy provide the two-stage fast DOA estimation algorithm a broader application prospect in the practical engineering field.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Song Liu ◽  
Lisheng Yang ◽  
Shizhong Yang ◽  
Qingping Jiang ◽  
Haowei Wu

A blind direction-of-arrival (DOA) estimation algorithm based on the estimation of signal parameters via rotational invariance techniques (ESPRIT) is proposed for a uniform circular array (UCA) when strong electromagnetic mutual coupling is present. First, an updated UCA model with mutual coupling in a discrete Fourier transform (DFT) beam space is deduced, and the new manifold matrix is equal to the product of a centrosymmetric diagonal matrix and a Vandermonde-structure matrix. Then we carry out blind DOA estimation through a modified ESPRIT method, thus avoiding the need for spatial angular searching. In addition, two mutual coupling parameter estimation methods are presented after the DOAs have been estimated. Simulation results show that the new algorithm is reliable and effective especially for closely spaced signals.


2012 ◽  
Vol 490-495 ◽  
pp. 1348-1352
Author(s):  
Guang Yu Liu ◽  
Cheng Zhang ◽  
Tie Lin Liu

The problem of battlefield acoustic target localization is studied based on an array model of a uniform circular array (UCA) mounted on a rigid cylinder including beamforming technology and high resolution direction of arrival (DOA) estimation algorithm. The influence of various facts to the discussed localization algorithms is analyzed. It is concluded that the direction of the battlefield acoustic target can be achieved by the proposed high resolution DOA estimation algorithm. The performance of the eigen-beam beamforming array and the high resolution DOA estimation algorithm can be improved by the rigid cylinder.


Sign in / Sign up

Export Citation Format

Share Document