scholarly journals The pivotal role and mechanism of long non-coding RNA B3GALT5-AS1 in the diagnosis of acute pancreatitis

2019 ◽  
Vol 47 (1) ◽  
pp. 2307-2315 ◽  
Author(s):  
Linlin Wang ◽  
Xiaonan Zhao ◽  
Ye Wang
2020 ◽  
Vol 115 (1) ◽  
pp. S1715-S1715
Author(s):  
Divya Nadella ◽  
Ashley Lui ◽  
Deena Bader ◽  
Roshan Warman ◽  
Gitanjali Vidyarthi ◽  
...  

Author(s):  
Jie Zhen ◽  
Wei Chen ◽  
Yang Liu ◽  
Xuefeng Zang

Acute pancreatitis (AP) is a kind of reversible inflammatory process of the exocrine pancreas. During the process, systemic inflammatory syndromes are involved, which relates closely to inflammatory mediators. Baicalin is a type of flavone compound extracted from Scutellaria baicalensis Georgi and exhibits anti-inflammation effect in several cancers. In this study, baicalin displayed a suppressing role on IL-1[Formula: see text], TNF[Formula: see text] and IL-6 in both cell and mice models. Necrosis was decreased in the baicalin treatment group and got a markedly lower pathological score. In this study, miR-15a is the core intermediate in baicalin regulation, which increased through baicalin treatment and protected pancreas cells and tissues, inhibiting the JNK signaling pathway by targeting MAP2K4. The long non-coding RNA MALAT1 is also a direct target of miR-15a and forms a competitive endogenous RNA (ceRNA) network with MAP2K4, which can be regulated by baicalin. In addition, upstream genes, including CDC42 and MAP3K1, were also regulated by baicalin, of which CDC42 was confirmed to form the second ceRNA network with MALAT1 and miR-15a. In conclusion, baicalin exhibits therapeutic activity towards AP by pumping up miR-15a level and inhibiting CDC42/MAP3K1, which affects AP as a brake by targeting MAP2K4 and inhibiting the JNK signaling pathway.


Inflammation ◽  
2021 ◽  
Author(s):  
Shang-Ping Zhao ◽  
Can Yu ◽  
Ming-Shi Yang ◽  
Zuo-Liang Liu ◽  
Bing-Chang Yang ◽  
...  

2014 ◽  
Vol 9 (S 01) ◽  
Author(s):  
MP Ashton ◽  
I Tan ◽  
L Mackin ◽  
C Elso ◽  
E Chu ◽  
...  

2017 ◽  
Author(s):  
Annamaria Morotti ◽  
Irene Forno ◽  
Valentina Andre ◽  
Andrea Terrasi ◽  
Chiara Verdelli ◽  
...  

2018 ◽  
Vol 27 (1) ◽  
pp. 19-24 ◽  
Author(s):  
Qianjun Li ◽  
Gang Ma ◽  
Huimin Guo ◽  
Suhua Sun ◽  
Ying Xu ◽  
...  

Background & Aims: Down-regulation of the growth arrest specific transcript 5 (GAS5) (long non-coding RNA) is associated with cell proliferation of gastric cancer (GC) and a poor prognosis. We aimed to investigate whether the variant rs145204276 of GAS5 is associated with the prognosis of GC in the Chinese population, and to unveil the regulatory mechanism underlying the GAS5 expression in GC tissues.Method: 1,253 GC patients and 1,354 healthy controls were included. The frequency of the genotype del/del and the allele del of rs145204276 were compared between the patients and the controls and between different subgroups of patients classified by clinicopathological variables. The overall survival rate was analyzed according to the Kaplan-Meier method using the log-rank test.Results: The frequency of genotype del/del was significantly lower in patients than in the controls (7.0% vs. 9.1%, p = 0.001). Kaplan-Meier analysis showed that genotype del/del was significantly associated with a higher survival rate (p = 0.01). Patients with late tumor stage were found to have a significantly lower rate of genotype del/del than those with an early tumor stage (4.9% vs. 8.8%, p = 0.01). Patients with UICC III and IV were found to have a significantly lower rate of genotype del/del than those with UICC I and II (5.3% vs. 8.1%, p = 0.02).Conclusion: The variant rs145204276 of GAS5 is associated with the development and prognosis of GC. The allele del of rs145204276 is associated with a remarkably lower incidence of cancer progression and metastasis.


Sign in / Sign up

Export Citation Format

Share Document