Development of a CFD model and procedure for flows through in-stream structures

Author(s):  
Yong G. Lai ◽  
David L. Smith ◽  
David J. Bandrowski ◽  
Yuncheng Xu ◽  
Christa M. Woodley ◽  
...  
Keyword(s):  
2019 ◽  
Vol 12 (4) ◽  
pp. 62-70
Author(s):  
K.N. Proskuryakov ◽  
A.V. Anikeev ◽  
E. Afshar ◽  
D.A. Pisareva
Keyword(s):  

2012 ◽  
Vol 512-515 ◽  
pp. 2135-2142 ◽  
Author(s):  
Yu Peng Wu ◽  
Zhi Yong Wen ◽  
Yue Liang Shen ◽  
Qing Yan Fang ◽  
Cheng Zhang ◽  
...  

A computational fluid dynamics (CFD) model of a 600 MW opposed swirling coal-fired utility boiler has been established. The chemical percolation devolatilization (CPD) model, instead of an empirical method, has been adapted to predict the nitrogen release during the devolatilization. The current CFD model has been validated by comparing the simulated results with the experimental data obtained from the boiler for case study. The validated CFD model is then applied to study the effects of ratio of over fire air (OFA) on the combustion and nitrogen oxides (NOx) emission characteristics. It is found that, with increasing the ratio of OFA, the carbon content in fly ash increases linearly, and the NOx emission reduces largely. The OFA ratio of 30% is optimal for both high burnout of pulverized coal and low NOx emission. The present study provides helpful information for understanding and optimizing the combustion of the studied boiler


Author(s):  
Heng Zhou ◽  
Shuyu Wang ◽  
Binbin Du ◽  
Mingyin Kou ◽  
Zhiyong Tang ◽  
...  

AbstractIn order to develop the central gas flow in COREX shaft furnace, a new installment of center gas supply device (CGD) is designed. In this work, a coupled DEM–CFD model was employed to study the influence of CGD on gas–solid flow in COREX shaft furnace. The particle descending velocity, particle segregation behaviour, void distribution and gas distribution were investigated. The results show that the CGD affects the particles descending velocity remarkably as the burden falling down to the slot. Particle segregation can be observed under the inverse ‘V’ burden profile, and the influence of CGD on the particle segregation is unobvious on the whole, which causes the result that the voidage is slightly changed. Although the effect of CGD on solid flow is not significant, the gas flow in shaft furnace has an obvious change. Compared with the condition without CGD, in the case with CGD, the gas velocity is improved significantly, especially in the middle zone of the furnace, which further promotes the center gas distribution. Meanwhile, the pressure drop in the furnace with the installation of CGD is increased partly.


Designs ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 4
Author(s):  
Dillon Alexander Wilson ◽  
Kul Pun ◽  
Poo Balan Ganesan ◽  
Faik Hamad

Microbubble generators are of considerable importance to a range of scientific fields from use in aquaculture and engineering to medical applications. This is due to the fact the amount of sea life in the water is proportional to the amount of oxygen in it. In this paper, experimental measurements and computational Fluid Dynamics (CFD) simulation are performed for three water flow rates and three with three different air flow rates. The experimental data presented in the paper are used to validate the CFD model. Then, the CFD model is used to study the effect of diverging angle and throat length/throat diameter ratio on the size of the microbubble produced by the Venturi-type microbubble generator. The experimental results showed that increasing water flow rate and reducing the air flow rate produces smaller microbubbles. The prediction from the CFD results indicated that throat length/throat diameter ratio and diffuser divergent angle have a small effect on bubble diameter distribution and average bubble diameter for the range of the throat water velocities used in this study.


Sign in / Sign up

Export Citation Format

Share Document