scholarly journals A portable Raspberry Pi-based system for diagnosis of heart valve diseases using automatic segmentation and artificial neural networks

2020 ◽  
Vol 7 (1) ◽  
pp. 1856757
Author(s):  
Abdulkader Joukhadar ◽  
Louay Chachati ◽  
Mohammed Al-Mohammed ◽  
Obada Albasha
2022 ◽  
Author(s):  
Diego Argüello Ron ◽  
Pedro Jorge Freire De Carvalho Sourza ◽  
Jaroslaw E. Prilepsky ◽  
Morteza Kamalian-Kopae ◽  
Antonio Napoli ◽  
...  

Abstract The deployment of artificial neural networks-based optical channel equalizers on edge-computing devices is critically important for the next generation of optical communication systems. However, this is a highly challenging problem, mainly due to the computational complexity of the artificial neural networks (NNs) required for the efficient equalization of nonlinear optical channels with large memory. To implement the NN-based optical channel equalizer in hardware, a substantial complexity reduction is needed, while keeping an acceptable performance level. In this work, we address this problem by applying pruning and quantization techniques to an NN-based optical channel equalizer. We use an exemplary NN architecture, the multi-layer perceptron (MLP), and address its complexity reduction for the 30 GBd 1000 km transmission over a standard single-mode fiber. We demonstrate that it is feasible to reduce the equalizer’s memory by up to 87.12%, and its complexity by up to 91.5%, without noticeable performance degradation. In addition to this, we accurately define the computational complexity of a compressed NN-based equalizer in the digital signal processing (DSP) sense and examine the impact of using different CPU and GPU settings on power consumption and latency for the compressed equalizer. We also verify the developed technique experimentally, using two standard edge-computing hardware units: Raspberry Pi 4 and Nvidia Jetson Nano.


Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1308
Author(s):  
Rusydi ◽  
Anandika ◽  
Rahmadya ◽  
Fahmy ◽  
Rusydi

Gambier leaves are widely used in cosmetics, beverages, and medicine. Tarantang village in West Sumatera, Indonesia, is famous for its gambier commodity. Farmers usually classify gambier leaves by area and color. They inherit this ability through generations. This research creates a tool to imitate the skill of the farmers to classify gambier leaves. The tool is a box covered from outside light. Two LEDs are attached inside the box to get maintain light intensity. A camera is used to capture the leaf image and a raspberry Pi processes the leaf features. A mini monitor is provided to operate the system. Six hundred and twenty-five gambier leaves were classified into five grades. Leaves categorized into grades 1, 2, and 3 are forbidden to be picked. Grade 4 leaves are allowed to be picked and those in grade 5 are the recommended ones for picking. Leaf features are area, perimeter, and intensity of leaf image. Three artificial neural networks are developed based on each feature. One thousand leaf images were used for training and 500 leaf images were used for testing. The accuracies of the features are about 93%, 96% and 97% for area, perimeter and intensity, respectively. A combination of rules are introduced into the system based on the feature accuracy. Those rules can give 100% accuracy compared to the farmer’s recommendation. A real time application to classify the leaves could provide classification with the same decision result as the classifying performed by the farmers.


2017 ◽  
Vol 21 ◽  
pp. 263-274 ◽  
Author(s):  
Mazin Abed Mohammed ◽  
Mohd Khanapi Abd Ghani ◽  
Raed Ibraheem Hamed ◽  
Dheyaa Ahmed Ibrahim ◽  
Mohamad Khir Abdullah

Sign in / Sign up

Export Citation Format

Share Document