scholarly journals Joint modeling of longitudinal change in tumor cell level and time to death of breast cancer patients: In case of Ayder comprehensive specialized Hospital Tigray, Ethiopia

2021 ◽  
Vol 8 (1) ◽  
pp. 1874090
Author(s):  
Bsrat Tesfay ◽  
Tewodros Getinet ◽  
Endeshaw Assefa Derso
2021 ◽  
Vol 1 (1) ◽  
pp. 55-68
Author(s):  
Urszula Smietanka ◽  
Małgorzata Szostakowska-Rodzos ◽  
Sylwia Tabor ◽  
Anna Fabisiewicz ◽  
Ewa A. Grzybowska

Circulating tumor cells (CTCs) are gaining momentum as a diagnostic tool and therapeutic target. CTC clusters are more metastatic, but harder to study and characterize, because they are rare and the methods of isolation are mostly focused on single CTCs. This review highlights the recent advances to our understanding of tumor cell clusters with the emphasis on their composition, origin, biology, methods of detection, and impact on metastasis and survival. New approaches to therapy, based on cluster characteristics are also described.


Oncogene ◽  
2021 ◽  
Author(s):  
Francesco Pantano ◽  
Martine Croset ◽  
Keltouma Driouch ◽  
Natalia Bednarz-Knoll ◽  
Michele Iuliani ◽  
...  

AbstractBone metastasis remains a major cause of mortality and morbidity in breast cancer. Therefore, there is an urgent need to better select high-risk patients in order to adapt patient’s treatment and prevent bone recurrence. Here, we found that integrin alpha5 (ITGA5) was highly expressed in bone metastases, compared to lung, liver, or brain metastases. High ITGA5 expression in primary tumors correlated with the presence of disseminated tumor cells in bone marrow aspirates from early stage breast cancer patients (n = 268; p = 0.039). ITGA5 was also predictive of poor bone metastasis-free survival in two separate clinical data sets (n = 855, HR = 1.36, p = 0.018 and n = 427, HR = 1.62, p = 0.024). This prognostic value remained significant in multivariate analysis (p = 0.028). Experimentally, ITGA5 silencing impaired tumor cell adhesion to fibronectin, migration, and survival. ITGA5 silencing also reduced tumor cell colonization of the bone marrow and formation of osteolytic lesions in vivo. Conversely, ITGA5 overexpression promoted bone metastasis. Pharmacological inhibition of ITGA5 with humanized monoclonal antibody M200 (volociximab) recapitulated inhibitory effects of ITGA5 silencing on tumor cell functions in vitro and tumor cell colonization of the bone marrow in vivo. M200 also markedly reduced tumor outgrowth in experimental models of bone metastasis or tumorigenesis, and blunted cancer-associated bone destruction. ITGA5 was not only expressed by tumor cells but also osteoclasts. In this respect, M200 decreased human osteoclast-mediated bone resorption in vitro. Overall, this study identifies ITGA5 as a mediator of breast-to-bone metastasis and raises the possibility that volociximab/M200 could be repurposed for the treatment of ITGA5-positive breast cancer patients with bone metastases.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Wen-Ting Yan ◽  
Xiang Cui ◽  
Qing Chen ◽  
Ya-Fei Li ◽  
You-Hong Cui ◽  
...  

2018 ◽  
Vol 172 (3) ◽  
pp. 659-669 ◽  
Author(s):  
Steven A. Narod ◽  
Vasily Giannakeas ◽  
Victoria Sopik

2019 ◽  
Vol 20 (5) ◽  
pp. 1237 ◽  
Author(s):  
Bhawna Sharma ◽  
Kalyan Nannuru ◽  
Sugandha Saxena ◽  
Michelle Varney ◽  
Rakesh Singh

Most breast cancer patients die due to bone metastasis. Although metastasis accounts for 5% of the breast cancer cases, it is responsible for most of the deaths. Sometimes even before the detection of a primary tumor, most of the patients have bone and lymph node metastasis. Moreover, at the time of death, breast cancer patients have the bulk of the tumor burden in their bones. Therapy options are available for the treatment of primary tumors, but there are minimal options for treating breast cancer patients who have bone metastasis. C-X-C motif chemokine receptor type 2 (CXCR2) receptor-mediated signaling has been shown to play a critical role during bone-related inflammations and its ligands C-X-C motif chemokine ligand 6 (CXCL6) and 8 (CXCL8) aid in the resorption of bone during bone metastasis. In this study, we tested the hypothesis that CXCR2 contributes to mammary tumor-induced osteolysis and bone metastasis. In the present study, we examined the role of both tumor cell-derived and host-derived CXCR2 in influencing mammary tumor cell bone metastasis. For understanding the role of tumor cell-derived CXCR2, we utilized Cl66 CXCR2 knockdown (Cl66-shCXCR2) and Cl66-Control cells (Cl66-Control) and observed a significant decrease in tumor growth and tumor-induced osteolysis in Cl66-shCXCR2 cells in comparison with the Cl66-Control cells. Next, for understanding the role of host-derived CXCR2, we utilized mice with genomic knockdown of CXCR2 (Cxcr2−/−) and injected Cl66-Luciferase (Cl66-Luc) or 4T1-Luciferase (4T1-Luc) cells. We observed decreased bone destruction and metastasis in the bone of Cxcr2−/− mice. Our data suggest the importance of both tumor cell- and host-derived CXCR2 signaling in the bone metastasis of breast cancer cells.


2014 ◽  
Vol 9 (4) ◽  
pp. 749-757 ◽  
Author(s):  
Marta Pestrin ◽  
Francesca Salvianti ◽  
Francesca Galardi ◽  
Francesca De Luca ◽  
Natalie Turner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document