mammary tumor cell
Recently Published Documents


TOTAL DOCUMENTS

153
(FIVE YEARS 17)

H-INDEX

29
(FIVE YEARS 2)

Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1427
Author(s):  
Marina Gobbe Moschetta-Pinheiro ◽  
Jucimara Colombo ◽  
Bianca Lara Venâncio de Godoy ◽  
Julia Ferreira Balan ◽  
Bianca Carlos Nascimento ◽  
...  

Breast cancer is the most prevalent tumor type among women and female dogs. Tumor malignancy is characterized by the epithelial-to-mesenchymal transition (EMT) which leads to the metastasis formation. The inhibition of angiotensin II type I receptor (AGTR1) by an antagonist such as losartan can suppress angiogenesis, consequently contributing to the metastasis control. The aim of this study was to analyze the capacity of losartan and AGTR-1 gene edition to modulate the EMT process in triple negative/metastatic mammary tumor cells, compared to existing treatment protocols such as carboplatin. The cell lines CF41.Mg and MDA-MB-468, were cultured and treated with carboplatin, losartan, or submitted to AGTR-1 gene edition by CRISPR/Cas9. EMT markers and PARP-1 protein and gene expression were evaluated by immunofluorescence or immunocytochemistry and qRT-PCR, respectively. Cell migration capacity was also evaluated. For CF41.Mg and MDA-MB-468 cell lines, there was an increase in E-cadherin and a decrease in N-cadherin and PARP-1 protein and gene expression after treatment with carboplatin, losartan, both in combination and after AGTR-1 gene edition. There was a decrease in VEGF and PARP-1 protein and gene expression after AGTR-1 gene edition. Moreover, in both lines, reduction in invasion rate was observed after all treatments. Our data suggest that losartan and the gene edition of AGTR-1 by CRISPR/Cas9 were able to block the DNA repair and control the EMT process, such as carboplatin. The results in the canine species are unprecedented, as there are no data in the literature that demonstrate the action of losartan in this tumor type.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Atena Daneshforouz ◽  
Samad Nazemi ◽  
Omid Gholami ◽  
Marzieh Kafami ◽  
Bahareh Amin

Abstract Background Despite significant advancements in breast cancer therapy, novel drugs with lower side effects are still being demanded. In this regard, we investigated the anti-cancer features of verbascoside in 4 T1 mouse mammary tumor cell. Methods First, MTT assay was performed with various concentrations (ranging between 5 to 200 μM) of verbascoside and IC50 was calculated. Then the expression of Bax, Bcl-2, and caspase-3 was evaluated in treated 4 T1 cells. In addition, we investigated the expression of TLR4, MyD88, and NF-κB to ascertain the underlying mechanism of the anti-proliferative feature of verbascoside. Also, flow cytometry followed by double PI and Annexin V was conducted to confirm the apoptosis-inducing effect of verbascoside. Results Our results from MTT assay showed verbascoside inhibits proliferation of 4 T1 cancer cells (IC50 117 μM) while is safe for normal HEK293T cells. By qRT-PCR, we observed that verbascoside treatment (100, 117 and, 130 μM) increases the expression of caspase-3 and Bax while reduces the expression of Bcl-2. Also, verbascoside (100, 117 and, 130 μM) increased the expression of TLR4 only at 130 μM dose and the expression of MyD88 whereas reduced the expression of NF-κB at mRNA level. Flow cytometry analysis also confirmed verbascoside induces apoptosis in 4 T1 cells at 117 μM. Conclusion Taken together, our data showed verbascoside is a safe natural compound for normal cells while has apoptosis-inducing feature through TLR4 axis on 4 T1 cells.


Author(s):  
Richa Arora ◽  
Waseem Akram Malla ◽  
Arpit Tyagi ◽  
Shikha Saxena ◽  
Sonalika Mahajan ◽  
...  

Background: Identification of candidate reference genes for real time PCR study is a preliminary requirement to normalize experimental data and thus, deduce a reliable conclusion. Complex tissues like mouse mammary gland constitutes various cell types which makes it difficult to identify reference gene constantly expressing under different experimental conditions. Methods: In this study we have identified suitable reference genes for 4T1 tumor cell line derived from mouse mammary tumor cells. We have studied four genes namely Gapdh, Actb, Prdx1 and Ctbp1 for their expression stability in CPV2.NS1 post transfected 4T1 cells by Best Keeper. Result: By our study, three reference genes i.e. Prdx1, Gapdh and Ctbp1 were found to be quite correlated with the BestKeeper index, but by considering all three criteria of selection by BestKeeper algorithm, Prdx1 showed minimum standard deviation and coefficient of variation and was found to be ranked at first position by BestKeeper which suggests Prdx1 to be considered as better internal control gene among all other reference genes taken in our study for qPCR based experiments in 4T1 mouse mammary tumor cell line transfected with CPV2.NS1


2021 ◽  
Author(s):  
Marina Gobbe Moschetta-Pinheiro ◽  
Jucimara Colombo ◽  
Murilo de Souza Tuckumantel ◽  
Gabriela Karam Rebolho ◽  
Debora Aparecida Zuccari

Author(s):  
Polyana Barbosa Silva ◽  
Márcia Antoniazi Michelin ◽  
Millena Prata Jammal ◽  
Eddie Fernando Cândido Murta

Abstract Objective To evaluate the antitumoral role of γδ TDC cells and αβ TDC cells in an experimental model of breast cancer. Methods Thirty female Balb/c mice were divided into 2 groups: control group (n = 15) and induced-4T1 group (n = 15), in which the mice received 2 × 105 4T1 mammary tumor cell line. Following the 28-day experimental period, immune cells were collected from the spleen and analyzed by flow cytometry for comparison of αβ TDC (TCRαβ+ CD11c+MHCII+) and γδ TDC (TCRγδ+CD11c+MHCII+) cells regarding surface markers (CD4+ and C8+) and cytokines (IFN-γ, TNF-α, IL-12 and IL-17). Results A total of 26.53% of γδ TDC - control group (p < 0.0001) - the proportion of αβ TDC was lower in splenic cells than γδ TDC; however, these 2 cell types were reduced in tumor conditions (p < 0.0001), and the proportion of IFN-γ, TNF-α, IL-12 and IL-17 cytokines produced by γδ TDC was higher than those produced by αβ TDC, but it decreased under conditions of tumor-related immune system response (p < 0.0001). Conclusion Healthy mice engrafted with malignant cells 4T1 breast tumor presented TDC with γδ TCR repertoire. These cells express cytotoxic molecules of lymphocytes T, producing anti-tumor proinflammatory cytokines.


Animals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 37
Author(s):  
Ying Zhao ◽  
Zixiang Lin ◽  
Zhaoyan Lin ◽  
Chaoyu Zhou ◽  
Gang Liu ◽  
...  

Mucin 1 (MUC1), a transmembrane protein, is closely associated with the malignancy and metastasis of canine mammary tumors; however, the role of overexpressed MUC1 in the development of cancer cells and response to drug treatment remains unclear. To address this question, we developed a new canine mammary tumor cell line, CIPp-MUC1, with an elevated expression level of MUC1. In vitro studies showed that CIPp-MUC1 cells are superior in proliferation and migration than wild-type control, which was associated with the upregulation of PI3K, p-Akt, mTOR, Bcl-2. In addition, overexpression of MUC1 in CIPp-MUC1 cells inhibited the suppressing activity of disulfiram on the growth and metastasis of tumor cells, as well as inhibiting the pro-apoptotic effect of disulfiram. In vivo studies, on the other side, showed more rapid tumor growth and stronger resistance to disulfiram treatment in CIPp-MUC1 xenograft mice than in wild-type control. In conclusion, our study demonstrated the importance of MUC1 in affecting the therapeutical efficiency of disulfiram against canine mammary tumors, indicating that the expression level of MUC1 should be considered for clinical use of disulfiram or other drugs targeting PI3K/Akt pathway.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Kung-Chi Chang ◽  
Sarah D. Diermeier ◽  
Allen T. Yu ◽  
Lily D. Brine ◽  
Suzanne Russo ◽  
...  

AbstractMisregulation of long non-coding RNA (lncRNA) genes has been linked to a wide variety of cancer types. Here we report on Mammary Tumor Associated RNA 25 (MaTAR25), a nuclear enriched and chromatin associated lncRNA that plays a role in mammary tumor cell proliferation, migration, and invasion, both in vitro and in vivo. MaTAR25 functions by interacting with purine rich element binding protein B (PURB), and associating with a major downstream target gene Tensin1 (Tns1) to regulate its expression in trans. The Tns1 protein product is a critical component of focal adhesions linking signaling between the extracellular matrix and the actin cytoskeleton. Knockout of MaTAR25 results in down-regulation of Tns1 leading to a reorganization of the actin cytoskeleton, and a reduction of focal adhesions and microvilli. We identify LINC01271 as the human ortholog of MaTAR25, and importantly, increased expression of LINC01271 is associated with poor patient prognosis and metastasis. Our findings demonstrate that LINC01271 represents a potential therapeutic target to alter breast cancer progression.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Tiffany Scully ◽  
Annie James ◽  
Chifei Kang ◽  
Irini M Antoniou ◽  
Abora Ettela ◽  
...  

Abstract Obesity is associated with increased cancer risk and cancer-associated mortality1,2. Hypertriglyceridemia (HTG), a component of the metabolic syndrome which frequently co-exists with obesity, has been associated with increased breast cancer risk and mortality in triple negative breast cancer (TNBC)3,4. To determine if HTG is causally related to enhanced TNBC progression in the absence of other obesity-associated characteristics, TNBC growth and metastasis in a mouse model of HTG was examined. Mice overexpressing human apolipoprotein C3 (AC3) were backcrossed onto FVB/N background and crossed with recombination-activating gene 1 (Rag1) knockout mice to generate immunodeficient HTG mice. AC3 mice relative to wild-type (WT) littermates showed a 20-fold higher circulating triglycerides (p &lt; 0.0001) and elevated very low density lipoprotein (VLDL) cholesterol (p = 0.001). No differences in body weight, body composition, blood glucose or plasma insulin levels were observed between the two groups, allowing for investigation on the influence of HTG on TNBC without confounders such as hyperinsulinemia or hyperglycemia. AC3 mice orthotopically implanted with the mouse mammary tumor cell line, Mvt1, showed both increased tumor growth (AC3 vs WT: 1157.0 ± 84.2 vs 707.2 ± 58.6 mm3, p = 0.0009) and lung metastasis (AC3 vs WT: 57.3 ± 3.0 vs 32.9 ± 5.3 mm3, p = 0.001) relative to WT mice. Immunodeficient Rag1/AC3 mice likewise, showed increased tumor growth compared to WT controls when implanted with human TNBC MDA-MB-231 cells (AC3 vs WT: 363.2 ± 113.9 vs 92.95 ± 16.2 mm3, p = 0.038). To investigate how HTG affects tumor lipid metabolism, serum and tumors from both groups were analyzed by liquid chromatography/mass spectrometry. Total alkyl-acyl, di-acyl-phosphatidylcholines and sphingomyelin concentrations were higher in the serum of AC3 mice relative to WT. In contrast, no overall difference in tumor phospholipid or acylcarnitine content was noted between AC3 and WT mice, suggesting no difference in fatty acid oxidation in the setting of HTG. Mvt1 tumors from AC3 and WT mice were analyzed by RNA sequencing. Decreased expression of genes associated with cholesterol synthesis (Fdft1, Pvmk, Acss2) were found in tumors from AC3 mice. Tumors from AC3 mice also showed decreased protein expression of LDLR, which is associated with LDL cholesterol uptake. Overall, these findings suggest that HTG, independently of other obesity-associated characteristics such as hyperinsulinemia and hyperglycemia, leads to changes in intracellular lipid metabolism and promotes TNBC progression. References: 1Chan, D. S. M. et al. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol.25, 1901-1914 (2014). 2Pierobon, M. & Frankenfeld, C. L. Breast Cancer Res. Treat.137, 307-314 (2013). 3Lofterød, T. et al. BMC Cancer18, 654 (2018).4Goodwin, P. J. et al. Nutr. Cancer27, 284-292 (1997).


2020 ◽  
Vol 21 (4) ◽  
pp. 1185
Author(s):  
Lilla Hámori ◽  
Gyöngyi Kudlik ◽  
Kornélia Szebényi ◽  
Nóra Kucsma ◽  
Bálint Szeder ◽  
...  

Breast cancer is the most commonly occurring cancer in women and the second most common cancer overall. By the age of 80, the estimated risk for breast cancer for women with germline BRCA1 or BRCA2 mutations is around 80%. Genetically engineered BRCA1-deficient mouse models offer a unique opportunity to study the pathogenesis and therapy of triple negative breast cancer. Here we present a newly established Brca1−/−, p53−/− mouse mammary tumor cell line, designated as CST. CST shows prominent features of BRCA1-mutated triple-negative breast cancers including increased motility, high proliferation rate, genome instability and sensitivity to platinum chemotherapy and PARP inhibitors (olaparib, veliparib, rucaparib and talazoparib). Genomic instability of CST cells was confirmed by whole genome sequencing, which also revealed the presence of COSMIC (Catalogue of Somatic Mutations in Cancer) mutation signatures 3 and 8 associated with homologous recombination (HR) deficiency. In vitro sensitivity of CST cells was tested against 11 chemotherapy agents. Tumors derived from orthotopically injected CST-mCherry cells in FVB-GFP mice showed sensitivity to cisplatin, providing a new model to study the cooperation of BRCA1-KO, mCherry-positive tumor cells and the GFP-expressing stromal compartment in therapy resistance and metastasis formation. In summary, we have established CST cells as a new model recapitulating major characteristics of BRCA1-negative breast cancers.


Oncotarget ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 573-573
Author(s):  
Elpetra Timmermans-Sprang ◽  
Rob W.J. Collin ◽  
Arjen Henkes ◽  
Meike Philipsen ◽  
Jan A. Mol

Sign in / Sign up

Export Citation Format

Share Document