Removal of CO2 in a multi stage fluidised bed reactor by monoethanolamine impregnated activated carbon

Author(s):  
Dipa Das ◽  
B. C. Meikap
Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5207
Author(s):  
Cristian Ferreiro ◽  
Natalia Villota ◽  
José Ignacio Lombraña ◽  
María J. Rivero ◽  
Verónica Zúñiga ◽  
...  

This work presents an efficient method for treating industrial wastewater containing aniline and benzothiazole, which are refractory to conventional treatments. A combination of heterogeneous photocatalysis operating in a fluidised bed reactor is studied in order to increase mass transfer and reduce reaction times. This process uses a manganese dioxide catalyst supported on granular activated carbon with environmentally friendly characteristics. The manganese dioxide composite is prepared by hydrothermal synthesis on carbon Hydrodarco® 3000 with different active phase ratios. The support, the metal oxide, and the composite are characterised by performing Brunauer, Emmett, and Teller analysis, transmission electron microscopy, X-ray diffraction analysis, X-ray fluorescence analysis, UV–Vis spectroscopy by diffuse reflectance, and Fourier transform infrared spectroscopy in order to evaluate the influence of the metal oxide on the activated carbon. A composite of MnO2/GAC (3.78% in phase α-MnO2) is obtained, with a 9.4% increase in the specific surface of the initial GAC and a 12.79 nm crystal size. The effect of pH and catalyst load is studied. At a pH of 9.0 and a dose of 0.9 g L−1, a high degradation of aniline and benzothiazole is obtained, with an 81.63% TOC mineralisation in 64.8 min.


2013 ◽  
Vol 551 ◽  
pp. 37-43 ◽  
Author(s):  
Christian Doblin ◽  
David Freeman ◽  
Matthew Richards

The CSIRO is developing the TIRO™ process for the continuous direct production of titanium powder. The process comprises two stages. The first stage is a fluidised bed reactor (FBR) in which TiCl4 is reacted with magnesium powder to form solid magnesium chloride particles about 350 µm in diameter in which micron sized titanium particles are dispersed. The second stage is a continuous vacuum distillation operation where the titanium is separated from the magnesium chloride and sintered to form a friable “biscuit”. The biscuit comprises porous titanium spheres about 250 µm in diameter which can be liberated by very light grinding. The overall process has a throughput of 0.2 kg/h Ti, limited by the vacuum distillation unit and is being scaled up. The process has generated Ti powder with ≤0.25 wt% O and < 200 ppm Cl and meets CP2 specifications. Ring grinding the vacuum distilled product for short periods reduced the particle size, however longer grinding times caused agglomeration of the particles. Ring grinding in air resulted in a large increase in oxygen concentration


Sign in / Sign up

Export Citation Format

Share Document