Inverse Finite Element Analysis of Technological Processes of Heat and Mass Transport in Agricultural and Forest Products

2005 ◽  
Vol 23 (8) ◽  
pp. 1737-1750 ◽  
Author(s):  
Jerzy Weres ◽  
Wiesław Olek
AIAA Journal ◽  
2017 ◽  
Vol 55 (1) ◽  
pp. 297-308 ◽  
Author(s):  
Mattia Alioli ◽  
Pierangelo Masarati ◽  
Marco Morandini ◽  
Trenton Carpenter ◽  
N. Brent Osterberg ◽  
...  

Author(s):  
Bulat Kenessov ◽  
Miras Derbissalin ◽  
Jacek A. Koziel ◽  
Dmitry S. Kosyakov

Experimental optimization of analytical methods based on solid-phase microextraction (SPME) is a complex and labor-intensive process associated with uncertainties. Using theoretical basics of SPME and finite element analysis software for the optimization proved to be an efficient alternative. In this study, an improved finite element analysis-based model for SPME of volatile organic compounds (VOCs) by porous coatings was developed mainly focussing on the mass transport in coatings. Benzene and the Carboxen/polydimethylsiloxane (Car/PDMS) coating were used as the model VOC and a porous SPME coating, respectively. It has been established that in the coating, volumetric fractions of Carboxen, PDMS, and air are 33, 42 and 25%, respectively. It has been proven that Knudsen diffusion in micropores can slow down a mass transport of analytes in the coating. For Car/PDMS coating, mass transport of benzene is mostly characterized by a molecular diffusion, which can be explained by a large fraction of macro- and mesopores. It has been shown that the developed model can be used to model the extraction of VOCs from air and water samples encountered in a typical SPME development method procedure. It was possible to determine system equilibration times and use them to optimize sample volume and Henry’s law constant. The developed model is relatively simple, fast, and can be recommended for optimization of extraction parameters for other analytes and SPME coatings. The diffusivity of analytes in a coating is an important property needed for improved characterization of existing and new SPME polymers and analytical method optimization.


1970 ◽  
Vol 3 ◽  
pp. 17-18
Author(s):  
Raquel Simón-Allué ◽  
Assad Oberai ◽  
Begoña Calvo

In this work we develop a methodology to characterize in vivo the passive mechanical behavior of abdominal muscle, using for that finite element simulations combined with inverse analysis and optimization algorithms. The knowledge of the mechanical response of the muscle is needed to determine the features of the mesh in cases of hernia surgery.


Sign in / Sign up

Export Citation Format

Share Document