Anti‐Cancer and Pro‐Apoptotic Effects of an Herbal Medicine andSaccharomyces CerevisiaeProduct (CKBM) on Human Hepatocellular Carcinoma HepG2 Cells In Vitro and In Vivo

2004 ◽  
Vol 26 (4) ◽  
pp. 597-609 ◽  
Author(s):  
J. Y. W. Chan ◽  
J. Y. N. Cheung ◽  
S. C. W. Luk ◽  
Y. J. Wu ◽  
S. F. Pang ◽  
...  
Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5445
Author(s):  
Min Jeong Kim ◽  
Anjugam Paramanantham ◽  
Won Sup Lee ◽  
Jeong Won Yun ◽  
Seong Hwan Chang ◽  
...  

We previously demonstrated that anthocyanins from the fruits of Vitis coignetiae Pulliat (AIMs) induced the apoptosis of hepatocellular carcinoma cells. However, many researchers argued that the concentrations of AIMs were too high for in vivo experiments. Therefore, we performed in vitro at lower concentrations and in vivo experiments for the anti-cancer effects of AIMs. AIMs inhibited the cell proliferation of Hep3B cells in a dose-dependent manner with a maximum concentration of 100 µg/mL. AIMs also inhibited the invasion and migration at 100 µg/mL concentration with or without the presence of TNF-α. To establish the relevance between the in vitro and in vivo results, we validated their effects in a Xenograft model of Hep3B human hepatocellular carcinoma cells. In the in vivo test, AIMs inhibited the tumorigenicity of Hep3B cells in the xenograft mouse model without showing any clinical signs of toxicity or any changes in the body weight of mice. AIMs inhibited the activation NF-κB and suppressed the NF-κB-regulated proteins, intra-tumoral microvessel density (IMVD) and the Ki67 activity of Hep3B xenograft tumors in athymic nude mice. In conclusion, this study indicates that AIMs have anti-cancer effects (inhibition of proliferation, invasion, and angiogenesis) on human hepatocellular carcinoma xenograft through the inhibition of NF-κB and its target protein.


2018 ◽  
Vol 51 (5) ◽  
pp. 2065-2072 ◽  
Author(s):  
Wei Bian ◽  
Hongfei Zhang ◽  
Miao Tang ◽  
Shaojun Zhang ◽  
Lichao Wang ◽  
...  

Background/Aims: Disseminated tumors, known as metastases, are responsible for ninety-percent of mortality due to cancer. Epithelial to mesenchymal transition, a phenomenon required for morphological conversion of non-motile discoid shaped epithelial cells to highly motile spindle-shaped mesenchymal cells, is thought to be a pre-requisite for metastatic progression. Metastasis-associated 1 (MTA1) protein is a prime inducer of EMT and metastatic progression in all solid tumors including hepatocellular carcinoma (HCC). However, the molecular mechanisms that regulate the expression and function of MTA1 in HCC have not been elucidated. Methods: In silico prediction algorithms were used to find microRNAs (miRNAs) that may target MTA1. We examined the relationship between the expression of MTA1 and miR-183 using quantitative real time PCR. We also determined the levels of the MTA1 protein using immunohistochemistry. Reporter assays, in the presence and absence of the miR-183 mimic, were used to confirm MTA1 as a bona fide target of miR183. The effect of miR-183 on HCC pathogenesis was determined using a combination of in vitro migration and invasion assay, together with in vivo xenograft experiments. The correlation between miR-183 and MTA1 expression was also studied in samples from HCC patients, and in The Cancer Genome Atlas dataset. Results: Analysis of the sequence database revealed that MTA1 is a putative target of miR-183. MTA1 protein and RNA expression showed opposite trends to miR-183 expression in breast, renal, prostate, and testicular tissue samples from cancer patients, and in the metastatic HCC cell line HepG2. An inverse correlation was also observed between MTA1 (high) and miR-183 (low) expression within samples from HHC patients and in the TCGA dataset. Reporter assays in HepG2 cells showed that miR-183 could inhibit translation of a reporter harboring the wild-type, but not the mutant miR-183 3’-untranslated region (UTR). In addition, miR-183 significantly inhibited in vitro migration and invasion in HepG2 cells, and in vivo hepatic metastasis. Conclusion: Our results reveal a novel post-transcriptional regulatory mechanism for MTA1 expression via miR-183, which is suppressed during HCC pathogenesis.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3390 ◽  
Author(s):  
Lujing Wang ◽  
Min Liu ◽  
Fei Yin ◽  
Yuanqiang Wang ◽  
Xingan Li ◽  
...  

Studies have indicated that Na+-d-glucose co-transporter (SGLT) inhibitors had anti-proliferative activity by attenuating the uptake of glucose in several tumor cell lines. In this study, the molecular docking showed that, trilobatin, one of the dihydrochalcones from leaves of Lithocarpus polystachyus Rehd., might be a novel inhibitor of SGLT1 and SGLT2, which evidently attenuated the uptake of glucose in vitro and in vivo. To our surprise, we observed that trilobatin did not inhibit, but promoted the proliferation of human hepatoblastoma HepG2 and Huh 7 cells when it was present at high concentrations. At the same time, incubation with high concentrations of trilobatin arrested the cell cycle at S phase in HepG2 cells. We also found that treatment with trilobatin had no significant effect on the expression of hepatitis B x-interacting protein (HBXIP) and hepatocyte nuclear factor (HNF)-4α, the two key regulators of hepatocyte proliferation. Taken together, although trilobatin worked as a novel inhibitor of SGLTs to attenuate the uptake of glucose, it also selectively induced the cell proliferation of HepG2 cells, suggesting that not all the SGLT inhibitors inhibited the proliferation of tumor cells, and further studies are needed to assess the anti-cancer potentials of new glucose-lowering agents.


2009 ◽  
Vol 286 (2) ◽  
pp. 223-231 ◽  
Author(s):  
Zhang Zhang ◽  
Shuo Wang ◽  
Hong Qiu ◽  
Chaohui Duan ◽  
Kan Ding ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document