scholarly journals STUDIES ON THE FINE STRUCTURE OF THE MAMMALIAN TESTIS

1955 ◽  
Vol 1 (4) ◽  
pp. 287-300 ◽  
Author(s):  
Mario H. Burgos ◽  
Don W. Fawcett

The differentiation of cat spermatids was studied in thin sections examined with the electron microscope. The Golgi complex of the spermatid consists of a central aggregation of minute vacuoles, partially surrounded by a lamellar arrangement of flattened vesicles. In the formation of the acrosome, one or more moderately dense homogeneous granules arise within vacuoles of the Golgi complex. The coalescence of these vacuoles and their contained granules gives rise to a single acrosomal granule within a sizable membrane-limited vacuole, termed the acrosomal vesicle. This adheres to the nuclear membrane and later becomes closely applied to the anterior two-thirds of the elongating nucleus to form a closed bilaminar head cap. The substance of the acrosomal granule occupies the narrow cleft between the membranous layers of the cap. The caudal sheath is comprised of many straight filaments extending backward from a ring which encircles the nucleus at the posterior margin of the head cap. Attention is directed to the frequent occurrence of pairs of spermatids joined by a protoplasmic bridge and the origin and possible significance of this relationship are discussed.

1957 ◽  
Vol 3 (6) ◽  
pp. 851-858 ◽  
Author(s):  
M. A. Epstein

The fibroblast-like tumour cells of Rous sarcomata have been studied in thin sections with the electron microscope. A description is given of the fine structure of the cells which includes some features not hitherto recorded. The tightly packed piles of smooth cisternae usually found only in the centrosome region have been observed, in individual Rous cells, in two separate areas of cytoplasm at opposite poles of the nucleus. Continuity between the perinuclear space and the lumen of rough surfaced cisternae of the endoplasmic reticulum has frequently been found; a similar continuity between the cisternae and the exterior of the cell has also been seen. In some cases, the cell membrane has been shown to have an unbroken connection with the outer nuclear membrane through continuity with the limiting membranes of elements of the endoplasmic reticulum. These findings are discussed.


Author(s):  
Roberta M. Bruck

An unusual structure in the cochlea is the spiral limbus; this periosteal tissue consists of stellate fibroblasts and collagenous fibers embedded in a translucent ground substance. The collagenous fibers are arranged in vertical columns (the auditory teeth of Haschke). Between the auditory teeth are interdental furrows in which the interdental cells are situated. These epithelial cells supposedly secrete the tectorial membrane.The fine structure of interdental cells in the rat was reported by Iurato (1962). Since the mouse appears to be different, a description of the fine structure of mouse interdental cells' is presented. Young adult C57BL/6J mice were perfused intervascularly with 1% paraformaldehyde/ 1.25% glutaraldehyde in .1M phosphate buffer (pH7.2-7.4). Intact cochlea were decalcified in .1M EDTA by the method of Baird (1967), postosmicated, dehydrated, and embedded in Araldite. Thin sections stained with uranyl acetate and lead citrate were examined in a Phillips EM-200 electron microscope.


1959 ◽  
Vol s3-100 (49) ◽  
pp. 13-15
Author(s):  
K. DEUTSCH ◽  
M. M. SWANN

The fine structure of a species of small free-living amoeba, Hartmanella astronyxis, has been investigated. The mitochondria resemble those of other species of amoeba. Structureless bodies of about the same size as mitochondria are sometimes found in association with them. Double membranes are common in the cytoplasm, and may show granules along their outer borders. The nuclear membrane is a double-layered structure, with a honeycomb structure evident in tangential sections. The cell membrane is also double-layered, or occasionally multi-layered.


1955 ◽  
Vol 1 (1) ◽  
pp. 69-88 ◽  
Author(s):  
Sanford L. Palay ◽  
George E. Palade

1. Thin sections of representative neurons from intramural, sympathetic and dorsal root ganglia, medulla oblongata, and cerebellar cortex were studied with the aid of the electron microscope. 2. The Nissl substance of these neurons consists of masses of endoplasmic reticulum showing various degrees of orientation; upon and between the cisternae, tubules, and vesicles of the reticulum lie clusters of punctate granules, 10 to 30 mµ in diameter. 3. A second system of membranes can be distinguished from the endoplasmic reticulum of the Nissl bodies by shallower and more tightly packed cisternae and by absence of granules. Intermediate forms between the two membranous systems have been found. 4. The cytoplasm between Nissl bodies contains numerous mitochondria, rounded lipid inclusions, and fine filaments.


1963 ◽  
Vol 18 (2) ◽  
pp. 429-440 ◽  
Author(s):  
Ryan W. Drum

The cytoplasmic fine structure of the motile, pennate diatom, Nitzschia palea was studied in thin sections viewed in the electron microscope. The cells were fixed in OsO4, embedded in methacrylate, and immersed in 10 per cent hydrofluoric acid (HF) for 36 to 40 hours to remove the siliceous cell wall prior to sectioning. The HF treatment did not cause any obvious cytoplasmic damage. The dictyosome complex is perinuclear, and located only in the central cytoplasm. Mitochondria are sparse in the central cytoplasm, but abundant in the peripheral cytoplasm, and fill many of the transvacuolar cytoplasmic strands. Characteristic, amorphous oil bodies fill certain cytoplasmic strands and probably are not leucosin. The pyrenoid appears to be membrane limited, and oil droplets are found adjacent to the pyrenoid. The pyrenoid of another diatom, Cymbella affinis, is also membrane-limited. The membrane limiting the pyrenoid may be a composite of the terminal portions of chloroplast discs, facilitating rapid movement of photosynthate into the pyrenoid matrix, where the characteristic oil droplets may be formed. Carinal fibrils are found singly in each carinal pore, and may be involved in the locomotion of Nitzschia palea.


1970 ◽  
Vol 6 (3) ◽  
pp. 655-667
Author(s):  
L. F. LA COUR ◽  
B. WELLS

The 1-4 chromocentres seen in nuclei of Fritillaria lanceolata, which derive from fusion of heterochromatic segments situated proximal to the centromere in all but two of the 24 chromosomes, were studied with the electron microscope in thin sections of pollen mother cells at zygotene and pachytene, in respect of the synaptinemal complex. Prophase stages of meiosis in two plants were also surveyed briefly with the light microscope. The latter observations revealed that the timing of the separation of heterochromatic segments from chromocentres is genetically controlled. In one plant the segments were still contained in chromocentres at pachytene, whereas in the other they were free at zygotene. At this time they could be identified by a near-surface position in the nucleus and an even condensation concomitant with an absence of chromomeres. In thin section, the fine structure of the chromocentres in zygotene nuclei was distinctive in that the chromatin fibrils were less condensed and more widely dispersed than those in euchromatic regions. The fibrillar network was also interspersed with ‘clear areas’ or channels. After further chromosome condensation, the condensation of fibrils in the chromocentres became equivalent at pachytene to those in euchromatic regions. Synaptinemal complexes were seen at zygotene and pachytene both in euchromatic regions and chromocentres. Their presence in the chromocentres signifies that homologous chromosomes must have been closely paired in regions extending from the centromeres to the distal ends of the heterochromatic segments already at telophase of the last pre-meiotic mitosis. Configurations involving entangled pairs of axial cores, peculiar to zygotene and chromocentres and parts of euchromatic regions proximal to them, are interpreted as resulting from restricted movement.


1966 ◽  
Vol 12 (6) ◽  
pp. 1125-1136 ◽  
Author(s):  
Alice Reyn ◽  
A. Birch-Andersen ◽  
S. P. Lapage

The line structure of Haemophilus vaginalis (Gardner and Dukes 1955) was compared with that of four, possibly related species (Butyribacterium rettgeri, Corynebacterium diphtheriae var. mitis, Lactobacillus acidophilus, Haemophilus influenzae) and an unrelated species, Neisseria haemolysans, which had shown a similar degree of Gram-variability as that of H. vaginalis. Although H. vaginalis was first described as a Gram-negative rod, its fine structure, particularly that of cell wall and septa, was more like that of Gram-positive organisms. Also N. haemolysans had a fine structure close to that of Gram-positive organisms, and its typical Gram-positive cell wall varied in. thickness from one cell to another.The study did not solve the problem of the classification of the so-called H. vaginalis, but the appearance of the few strains studied in the electron microscope suggests that it: should be included in Corynebacterium or Butyribacterium rather than in Lactobacillus.


1972 ◽  
Vol 18 (7) ◽  
pp. 997-1002 ◽  
Author(s):  
I. L. Stevenson ◽  
S. A. W. E. Becker

Methods have been developed for the rapid, reproducible induction of high-density populations of F. oxysporum chlamydospores. On transferring washed pregerminated conidia to a simple two-salts medium, chlamydospore morphogenesis was evident by 12 h and masses of mature spores could be harvested at the end of 4 days. Electron-microscope studies of thin sections of mature chlamydospores reveal a thick triple-layered cell wall. The cytoplasm contains, in addition to large lipid deposits, a nucleus, mitochondria, and endoplasmic reticulum all typical of fungal cells. Chlamydospores of F. oxysporum exhibit two distinct types of cell surface in thin section. The outer wall layer of two of the isolates studied was smooth-surfaced while the outer layer of the two other isolates was distinctly fibrillose. Some evidence is presented suggesting that the fibrillose material arises through the partial breakdown of the original hyphal wall.


1962 ◽  
Vol 13 (1) ◽  
pp. 109-115 ◽  
Author(s):  
Robert C. Buck ◽  
James M. Tisdale

The development of the mid-body has been studied in mitotic erythroblasts of the rat bone marrow by means of thin sections examined with the electron microscope. A differentiated region on the continuous spindle fibers, consisting of a localized increase in density, is observed at the equatorial plane. The mid-body seems to develop by the aggregation of such denser lengths of spindle fiber. Its appearance precedes that of the cleavage furrow. A plate-like arrangement of fibrillary material lies transversely across the telophase intercellular bridge. Later, this material becomes amorphous and assumes the form of a dense ring closely applied to a ridge in the plasma membrane encircling the middle of the bridge. Although the mid-body forms in association with the spindle fibers, it is a structurally distinct part, and the changes which it undergoes are not shared by the rest of the bundle of continuous fibers.


1961 ◽  
Vol 9 (1) ◽  
pp. 171-181 ◽  
Author(s):  
Woutera Van Iterson ◽  
C. F. Robinow

The nuclei of two spherical bacteria have been examined in electron micrographs of thin sections of specimens prepared by the method of Ryter and Kellenberger (1958). The nuclei appear to consist of the same fine fibers in a matrix of low density which have already been seen in many other bacteria prepared by the same procedure. They are worth a separate description because their constituent fibers are arranged in patterns of uncommon orderliness. In the nuclei of one of the two bacteria this is seen at all times, in the nuclei of the other one only at the beginning of the growth cycle. In some places the diameter of the nuclear fibers is close to that of the DNA molecule in the model of Watson and Crick (1953).


Sign in / Sign up

Export Citation Format

Share Document