Chromocentres and The Synaptinemal Complex

1970 ◽  
Vol 6 (3) ◽  
pp. 655-667
Author(s):  
L. F. LA COUR ◽  
B. WELLS

The 1-4 chromocentres seen in nuclei of Fritillaria lanceolata, which derive from fusion of heterochromatic segments situated proximal to the centromere in all but two of the 24 chromosomes, were studied with the electron microscope in thin sections of pollen mother cells at zygotene and pachytene, in respect of the synaptinemal complex. Prophase stages of meiosis in two plants were also surveyed briefly with the light microscope. The latter observations revealed that the timing of the separation of heterochromatic segments from chromocentres is genetically controlled. In one plant the segments were still contained in chromocentres at pachytene, whereas in the other they were free at zygotene. At this time they could be identified by a near-surface position in the nucleus and an even condensation concomitant with an absence of chromomeres. In thin section, the fine structure of the chromocentres in zygotene nuclei was distinctive in that the chromatin fibrils were less condensed and more widely dispersed than those in euchromatic regions. The fibrillar network was also interspersed with ‘clear areas’ or channels. After further chromosome condensation, the condensation of fibrils in the chromocentres became equivalent at pachytene to those in euchromatic regions. Synaptinemal complexes were seen at zygotene and pachytene both in euchromatic regions and chromocentres. Their presence in the chromocentres signifies that homologous chromosomes must have been closely paired in regions extending from the centromeres to the distal ends of the heterochromatic segments already at telophase of the last pre-meiotic mitosis. Configurations involving entangled pairs of axial cores, peculiar to zygotene and chromocentres and parts of euchromatic regions proximal to them, are interpreted as resulting from restricted movement.

1961 ◽  
Vol 9 (1) ◽  
pp. 171-181 ◽  
Author(s):  
Woutera Van Iterson ◽  
C. F. Robinow

The nuclei of two spherical bacteria have been examined in electron micrographs of thin sections of specimens prepared by the method of Ryter and Kellenberger (1958). The nuclei appear to consist of the same fine fibers in a matrix of low density which have already been seen in many other bacteria prepared by the same procedure. They are worth a separate description because their constituent fibers are arranged in patterns of uncommon orderliness. In the nuclei of one of the two bacteria this is seen at all times, in the nuclei of the other one only at the beginning of the growth cycle. In some places the diameter of the nuclear fibers is close to that of the DNA molecule in the model of Watson and Crick (1953).


Nuclear pores have been studied with the electron microscope in thin sections of pollen mother cells at early- to mid-meiotic prophase ( a ) in respect of distribution, ( b ) in relation to fine structure in the pore complex in the following plants: Fritillaria lanceolata, Phaedranassa viridijlora, Tulbaghia violacea , an F 1 hybrid of Allium fisultosum x Allium cepa and the lily var. 'Formobel'. In all plants from leptotene to pachytene, the pores were irregularly spread over the envelope in random clusters of variable size encircled by areas in which they did not occur. Further proof was obtained from the lily for the premise that pores are not formed in regions of the envelope to which the nucleolus is adpressed at leptotene. The fine structure of the pore complex observed supports a model which proposes that annuli are composed of three rings of eight granular subunits. Most pores contained a central granule ranging from 25 to 30 nm in diameter composed of amorphous substance and filaments about 3 nm wide, apparently continuous with filaments of similar dimensions in the symmetrical annular subunits that encircle the orifice at both the nuclear and cytoplasmic sides of the pore. The pore complex and central granule were relatively more stable to osmotic shock than the ribosomal region of the nucleolus. Recent ideas concerning the role of the annulus and central granule in nucleocytoplasmic transfer of ribonucleoprotein and assembly of polyribosomes are discussed.


1974 ◽  
Vol 20 (1) ◽  
pp. 13-17 ◽  
Author(s):  
H.-D. Tauschel ◽  
Judith F. M. Hoeniger

The morphology of the photosynthetic bacterium Rhodopseudomonas acidophila strain P18aF1 1.2 has been investigated with the electron microscope. The cells grow by budding, the sessile buds eventually separating from the mother cells by constriction. In some dividing stages a belt-like structure was observed in the zone of division. Motile cells possess a subpolar tuft of unsheathed flagella. At the site of insertion of the flagella, the cell wall bears 12- to 14-nm wide holes or annuli through which the flagella probably pass. Motile cells readily lose their flagella.The structure of the surface revealed two distinct types: cells with a hexagonally patterned outer layer composed of ring-shaped elements and cells possessing a thick, fibrous capsule. Thin sections showed a well-developed thylakoid system arranged in piles and similar to that of other budding photosynthetic bacteria.The morphology of R. acidophila has been compared with that of R. palustris to show similarities and differences between the two species.


Author(s):  
Roberta M. Bruck

An unusual structure in the cochlea is the spiral limbus; this periosteal tissue consists of stellate fibroblasts and collagenous fibers embedded in a translucent ground substance. The collagenous fibers are arranged in vertical columns (the auditory teeth of Haschke). Between the auditory teeth are interdental furrows in which the interdental cells are situated. These epithelial cells supposedly secrete the tectorial membrane.The fine structure of interdental cells in the rat was reported by Iurato (1962). Since the mouse appears to be different, a description of the fine structure of mouse interdental cells' is presented. Young adult C57BL/6J mice were perfused intervascularly with 1% paraformaldehyde/ 1.25% glutaraldehyde in .1M phosphate buffer (pH7.2-7.4). Intact cochlea were decalcified in .1M EDTA by the method of Baird (1967), postosmicated, dehydrated, and embedded in Araldite. Thin sections stained with uranyl acetate and lead citrate were examined in a Phillips EM-200 electron microscope.


Author(s):  
T. Guha ◽  
A. Q. Siddiqui ◽  
P. F. Prentis

The Primary Spermatocytes represent a stage in spermatogenesis when the first meiotic cell division occurs. They are derived from Spermatogonium or Stem cell through mitotic division. At the zygotene phase of meiotic prophase the Synaptonemal complex appears in these cells in the space between the paired homologous chromosomes. Spermatogenesis and sperm structure in fish have been studied at the electron microscope level in a few species? However, no work has yet been reported on ultrastructure of tilapia, O. niloticus, spermatozoa and spermatogenetic process. In this short communication we are reporting the Ultrastructure of Primary Spermatocytes in tilapia, O. niloticus, and the fine structure of synaptonemal complexes seen in the spermatocyte nuclei.


1964 ◽  
Vol 23 (1) ◽  
pp. 63-78 ◽  
Author(s):  
James R. Coleman ◽  
Montrose J. Moses

The indium trichloride method of Watson and Aldridge (38) for staining nucleic acids for electron microscopy was employed to study the relationship of DNA to the structure of the synaptinemal complex in meiotic prophase chromosomes of the domestic rooster. The selectivity of the method was demonstrated in untreated and DNase-digested testis material by comparing the distribution of indium staining in the electron microscope to Feulgen staining and ultraviolet absorption in thicker sections seen with the light microscope. Following staining by indium, DNA was found mainly in the microfibril component of the synaptinemal complex. When DNA was known to have been removed from aldehyde-fixed material by digestion with DNase, indium stainability was also lost. However, staining of the digested material with non-selective heavy metal techniques demonstrated the presence of material other than DNA in the microfibrils and showed that little alteration in appearance of the chromosome resulted from DNA removal. The two dense lateral axial elements of the synaptinemal complex, but not the central one to any extent, also contained DNA, together with non-DNA material.


Parasitology ◽  
1969 ◽  
Vol 59 (3) ◽  
pp. 625-636 ◽  
Author(s):  
Kathleen M. Lyons

The fine structure of two kinds of compound presumed sense organs from the heads of three skin parasitic monogeneans Gyrodactylus sp. Entobdella soleae (larva only) and Acanthocotyle elegans is described. One kind of compound receptor consists of a number of associated sensilla, each ending in a single cilium (the spike sensilla of Gyrodactylus and the cone sensilla of E. soleae oncomiracidium).The other kind of compound organ is made up of one or a few neurones only, each of which bears many cilia (pit organs of E. soleae oncomiracidium and feeding organ sensilla of Acanthocotyle elegans). The spike sensilla of Gyrodactylus have also been studied using a Cambridge Instrument Co. Stereoscan electron microscope and by phase-contrast microscopy. The ciliary endings of all these sense organs are highly modified and have lost the 9 + 2 structure, being packed with many fibres. The fibre arrangement in the cilia of the cone sensillae of E. soleae oncomiracidium and the feeding organ sensilla of A. elegans has been compared with that in the ciliary endings of other invertebrate mechano- and chemoreceptors. The possibility that the spike sensilla of Gyrodactylus may be chemoreceptors has been discussed but it is considered premature to attempt to assign functions to the other sense organs studied. Electron dense membrane-bound inclusions occurring specifically in the nerves supplying the spike sensilla of Gyrodactylus may be neurosecretory.


1955 ◽  
Vol 1 (1) ◽  
pp. 69-88 ◽  
Author(s):  
Sanford L. Palay ◽  
George E. Palade

1. Thin sections of representative neurons from intramural, sympathetic and dorsal root ganglia, medulla oblongata, and cerebellar cortex were studied with the aid of the electron microscope. 2. The Nissl substance of these neurons consists of masses of endoplasmic reticulum showing various degrees of orientation; upon and between the cisternae, tubules, and vesicles of the reticulum lie clusters of punctate granules, 10 to 30 mµ in diameter. 3. A second system of membranes can be distinguished from the endoplasmic reticulum of the Nissl bodies by shallower and more tightly packed cisternae and by absence of granules. Intermediate forms between the two membranous systems have been found. 4. The cytoplasm between Nissl bodies contains numerous mitochondria, rounded lipid inclusions, and fine filaments.


1970 ◽  
Vol 16 (11) ◽  
pp. 1041-1044 ◽  
Author(s):  
W. E. McKeen

Osmiophilic bodies appear in parts of the colonial growth of Erysiphe graminis DC. f. sp. hordei Em Marchal culture CR3 growing on the susceptible commercial Keystone variety of barley. They are readily observed by the light and electron microscope after osmium tetroxide staining and are abundant in conidiophores, conidia, and mycelium except in haustorial mother cells, in which they are usually absent. The metabolism of haustorial mother cells is distinct and the fine structure of adjoining cells is frequently different. Osmiophilic bodies are absent from the growing hyphal tip, but gradually increase in number and size further back in the terminal cell. Electron micrographs show that they are intracytoplasmic, intravacuolar, and up to 1 μ in diameter. When the colony is washed with acetone or alcohol rather than with aqueous buffer, after glutaraldehyde fixation, before osmium tetroxide fixation, the osmiophilic bodies are removed, indicating that they are lipids. Fat stains, Sudan black B, and Sudan IV stain these bodies. Perhaps the water needs of the germinating conidium are met in part by the oxidation of fats.


1963 ◽  
Vol 18 (2) ◽  
pp. 429-440 ◽  
Author(s):  
Ryan W. Drum

The cytoplasmic fine structure of the motile, pennate diatom, Nitzschia palea was studied in thin sections viewed in the electron microscope. The cells were fixed in OsO4, embedded in methacrylate, and immersed in 10 per cent hydrofluoric acid (HF) for 36 to 40 hours to remove the siliceous cell wall prior to sectioning. The HF treatment did not cause any obvious cytoplasmic damage. The dictyosome complex is perinuclear, and located only in the central cytoplasm. Mitochondria are sparse in the central cytoplasm, but abundant in the peripheral cytoplasm, and fill many of the transvacuolar cytoplasmic strands. Characteristic, amorphous oil bodies fill certain cytoplasmic strands and probably are not leucosin. The pyrenoid appears to be membrane limited, and oil droplets are found adjacent to the pyrenoid. The pyrenoid of another diatom, Cymbella affinis, is also membrane-limited. The membrane limiting the pyrenoid may be a composite of the terminal portions of chloroplast discs, facilitating rapid movement of photosynthate into the pyrenoid matrix, where the characteristic oil droplets may be formed. Carinal fibrils are found singly in each carinal pore, and may be involved in the locomotion of Nitzschia palea.


Sign in / Sign up

Export Citation Format

Share Document