scholarly journals Drosophilia spectrin. I. Characterization of the purified protein.

1987 ◽  
Vol 105 (5) ◽  
pp. 2095-2102 ◽  
Author(s):  
R Dubreuil ◽  
T J Byers ◽  
D Branton ◽  
L S Goldstein ◽  
D P Kiehart

We purified a protein from Drosophila S3 tissue culture cells that has many of the diagnostic features of spectrin from vertebrate organisms: (a) The protein consists of two equimolar subunits (Mr = 234 and 226 kD) that can be reversibly cross-linked into a complex composed of equal amounts of the two subunits. (b) Electron microscopy of the native molecule reveals two intertwined, elongated strands with a contour length of 180 nm. (c) Antibodies directed against vertebrate spectrin react with the Drosophila protein and, similarly, antibodies to the Drosophila protein react with vertebrate spectrins. One monoclonal antibody has been found to react with both of the Drosophila subunits and with both subunits of vertebrate brain spectrin. (d) The Drosophila protein exhibits both actin-binding and calcium-dependent calmodulin-binding activities. Based on the above criteria, this protein appears to be a bona fide member of the spectrin family of proteins.

1997 ◽  
Vol 321 (1) ◽  
pp. 107-115 ◽  
Author(s):  
Leena T. NEVALAINEN ◽  
Takashi AOYAMA ◽  
Mitsuhiko IKURA ◽  
Anna CRIVICI ◽  
Hong YAN ◽  
...  

We describe the isolation and interaction with calmodulin (CaM) of two 10-amino-acid peptides (termed peptides 1 and 2; AWDTVRISFG and AWPSLQAIRG respectively) derived from a phage random peptide display library. Both peptides are shorter than previously described CaM-binding peptides and lack certain features found in the sequences of CaM-binding domains present in CaM-activated enzymes. However, 1H NMR spectroscopy and fluorimetry indicate that both peptides interact with CaM in the presence of Ca2+. The two peptides differentially inhibited CaM-dependent kinases I and II (CaM kinases I and II) but did not affect CaM-dependent phosphodiesterase. Peptide 1 inhibited CaM kinase I but not CaM kinase II, whereas peptide 2 inhibited CaM kinase II, but only partially inhibited CaM kinase I at a more than 10-fold higher concentration. Peptide 1 also inhibited a plant calcium-dependent protein kinase, whereas peptide 2 did not. The ability of peptides 1 and 2 to differentially inhibit CaM-dependent kinases and CaM-dependent phosphodiesterase suggests that they may bind to distinct regions of CaM that are specifically responsible for activation of different CaM-dependent enzymes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qian-Hao Zhu ◽  
Warwick Stiller ◽  
Philippe Moncuquet ◽  
Stuart Gordon ◽  
Yuman Yuan ◽  
...  

Abstract Fiber mutants are unique and valuable resources for understanding the genetic and molecular mechanisms controlling initiation and development of cotton fibers that are extremely elongated single epidermal cells protruding from the seed coat of cottonseeds. In this study, we reported a new fuzzless-tufted cotton mutant (Gossypium hirsutum) and showed that fuzzless-tufted near-isogenic lines (NILs) had similar agronomic traits and a higher ginning efficiency compared to their recurrent parents with normal fuzzy seeds. Genetic analysis revealed that the mutant phenotype is determined by a single incomplete dominant locus, designated N5. The mutation was fine mapped to an approximately 250-kb interval containing 33 annotated genes using a combination of bulked segregant sequencing, SNP chip genotyping, and fine mapping. Comparative transcriptomic analysis using 0–6 days post-anthesis (dpa) ovules from NILs segregating for the phenotypes of fuzzless-tufted (mutant) and normal fuzzy cottonseeds (wild-type) uncovered candidate genes responsible for the mutant phenotype. It also revealed that the flanking region of the N5 locus is enriched with differentially expressed genes (DEGs) between the mutant and wild-type. Several of those DEGs are members of the gene families with demonstrated roles in cell initiation and elongation, such as calcium-dependent protein kinase and expansin. The transcriptome landscape of the mutant was significantly reprogrammed in the 6 dpa ovules and, to a less extent, in the 0 dpa ovules, but not in the 2 and 4 dpa ovules. At both 0 and 6 dpa, the reprogrammed mutant transcriptome was mainly associated with cell wall modifications and transmembrane transportation, while transcription factor activity was significantly altered in the 6 dpa mutant ovules. These results imply a similar molecular basis for initiation of lint and fuzz fibers despite certain differences.


1993 ◽  
Vol 268 (3) ◽  
pp. 1695-1701
Author(s):  
H. Munier ◽  
F.J. Blanco ◽  
B. Prêcheur ◽  
E. Diesis ◽  
J.L. Nieto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document