drosophila protein
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 8)

H-INDEX

33
(FIVE YEARS 1)

Author(s):  
Junhui Peng ◽  
Nicolas Svetec ◽  
Li Zhao

Abstract Proteins are the building blocks for almost all the functions in cells. Understanding the molecular evolution of proteins and the forces that shape protein evolution is essential in understanding the basis of function and evolution. Previous studies have shown that adaptation frequently occurs at the protein surface, such as in genes involved in host-pathogen interactions. However, it remains unclear whether adaptive sites are distributed randomly or at regions associated with particular structural or functional characteristics across the genome, since many proteins lack structural or functional annotations. Here, we seek to tackle this question by combining large-scale bioinformatic prediction, structural analysis, phylogenetic inference, and population genomic analysis of Drosophila protein-coding genes. We found that protein sequence adaptation is more relevant to function-related rather than structure-related properties. Interestingly, intermolecular interactions contribute significantly to protein adaptation. We further showed that intermolecular interactions, such as physical interactions, may play a role in the co-adaptation of fast-adaptive proteins. We found that strongly differentiated amino acids across geographic regions in protein-coding genes are mostly adaptive, which may contribute to the long-term adaptive evolution. This strongly indicates that a number of adaptive sites tend to be repeatedly mutated and selected in evolution, in the past, present, and maybe future. Our results highlight the important roles of intermolecular interactions and co-adaptation in the adaptive evolution of proteins both at the species and population levels.


Author(s):  
Ana López-Varea ◽  
Cristina M Ostalé ◽  
Patricia Vega-Cuesta ◽  
Ana Ruiz-Gómez ◽  
María F Organista ◽  
...  

Abstract We have screened a collection of UAS-RNAi lines targeting 10920 Drosophila protein-coding genes for phenotypes in the adult wing. We identified 3653 genes (33%) whose knock-down causes either larval/pupal lethality or a mutant phenotype affecting the formation of a normal wing. The most frequent phenotypes consist in changes in wing size, vein differentiation and patterning, defects in the wing margin and in the apposition of the dorsal and ventral wing surfaces. We also defined 16 functional categories encompassing the most relevant aspect of each protein function, and assigned each Drosophila gene to one of these functional groups. This allowed us to identify which mutant phenotypes are enriched within each functional group. Finally, we used previously published gene expression datasets to determine which genes are or are not expressed in the wing disc. Integrating expression, phenotypic and molecular information offers considerable precision to identify the relevant genes affecting wing formation and the biological processes regulated by them.


2021 ◽  
Vol 25 (3) ◽  
pp. 292-300
Author(s):  
N. V. Dorogova ◽  
A. E. Zubkova ◽  
E. V. Fedorova ◽  
E. U. Bolobolova ◽  
E. M. Baricheva

Drosophila protein GAGA (GAF) is a factor of epigenetic transcription regulation of a large group of genes with a wide variety of cellular functions. GAF is encoded by the Trithorax-like (Trl) gene, which is important for the formation of various organs and tissues at all stages of ontogenesis. In our previous works, we showed that this protein is necessary for the development of the reproductive system, both in males and females of Drosophila. Decreased expression of the Trl gene led to multiple disorders of spermatogenesis and oogenesis. One of the significant disorders was associated with massive degradation and loss of cells in the germline. In this work, we carried out a more detailed cytological study to determine what type of germ cell death is characteristic of Trl mutants, and whether there are disturbances or changes in this process compared to the norm. The results obtained showed that the lack of GAF protein causes massive germ cell death in both females and males of Drosophila, but this death manifests itself in different ways, depending on the sex. In Trl females, this process does not differ phenotypically from the norm. In the dying egg chambers, signs of apoptosis and autophagy were revealed, as well as morphological features that are characteristic of the wild type. In males, Trl mutations induce mass germ cell death through autophagy, which is not typical of Drosophila spermatogenesis, and has not been previously described, neither in the norm nor in other genes’ mutations. Thus, GAF lack in Trl mutants leads to increased germ cell death through apoptosis and autophagy. Ectopic cell death and germ line atrophy are probably associated with impaired expression of the GAGA factor target genes, among which there are genes that regulate both apoptosis and autophagy.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250592
Author(s):  
Hiren Banerjee ◽  
Ravinder Singh

Background Downstream targets for a large number of RNA-binding proteins remain to be identified. The Drosophila master sex-switch protein Sex-lethal (SXL) is an RNA-binding protein that controls splicing, polyadenylation, or translation of certain mRNAs to mediate female-specific sexual differentiation. Whereas some targets of SXL are known, previous studies indicate that additional targets of SXL have escaped genetic screens. Methodology/Principal findings Here, we have used an alternative molecular approach of GEnomic Selective Enrichment of Ligands by Exponential enrichment (GESELEX) using both the genomic DNA and cDNA pools from several Drosophila developmental stages to identify new potential targets of SXL. Our systematic analysis provides a comprehensive view of the Drosophila transcriptome for potential SXL-binding sites. Conclusion/Significance We have successfully identified new SXL-binding sites in the Drosophila transcriptome. We discuss the significance of our analysis and that the newly identified binding sites and sequences could serve as a useful resource for the research community. This approach should also be applicable to other RNA-binding proteins for which downstream targets are unknown.


Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1333 ◽  
Author(s):  
Duxan Arancibia ◽  
Matias Lira ◽  
Yocelin Cruz ◽  
Daniela P. Barrera ◽  
Carolina Montenegro-Venegas ◽  
...  

Neurons release neurotransmitters at a specialized region of the presynaptic membrane, the active zone (AZ), where a complex meshwork of proteins organizes the release apparatus. The formation of this proteinaceous cytomatrix at the AZ (CAZ) depends on precise homo- and hetero-oligomerizations of distinct CAZ proteins. The CAZ protein CAST1/ERC2 contains four coiled-coil (CC) domains that interact with other CAZ proteins, but also promote self-assembly, which is an essential step for its integration during AZ formation. The self-assembly and synaptic recruitment of the Drosophila protein Bruchpilot (BRP), a partial homolog of CAST1/ERC2, is modulated by the serine-arginine protein kinase (SRPK79D). Here, we demonstrate that overexpression of the vertebrate SRPK2 regulates the self-assembly of CAST1/ERC2 in HEK293T, SH-SY5Y and HT-22 cells and the CC1 and CC4 domains are involved in this process. Moreover, the isoform SRPK2 forms a complex with CAST1/ERC2 when co-expressed in HEK293T and SH-SY5Y cells. More importantly, SRPK2 is present in brain synaptic fractions and synapses, suggesting that this protein kinase might control the level of self-aggregation of CAST1/ERC2 in synapses, and thereby modulate presynaptic assembly.


Biology Open ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. bio038232
Author(s):  
Meghan E. O'Connell ◽  
Divya Sridharan ◽  
Tristan Driscoll ◽  
Ipsita Krishnamurthy ◽  
Wick G. Perry ◽  
...  

2017 ◽  
Vol 114 (49) ◽  
pp. 12988-12993 ◽  
Author(s):  
Belinda S. Pinto ◽  
Terry L. Orr-Weaver

Proper segregation of chromosomes in meiosis is essential to prevent miscarriages and birth defects. This requires that sister chromatids maintain cohesion at the centromere as cohesion is released on the chromatid arms when the homologs segregate at anaphase I. The Shugoshin proteins preserve centromere cohesion by protecting the cohesin complex from cleavage, and this has been shown in yeasts to be mediated by recruitment of the protein phosphatase 2A B′ (PP2A B′). In metazoans, delineation of the role of PP2A B′ in meiosis has been hindered by its myriad of other essential roles. The Drosophila Shugoshin MEI-S332 can bind directly to both of the B′ regulatory subunits of PP2A, Wdb and Wrd, in yeast two-hybrid experiments. Exploiting experimental advantages of Drosophila spermatogenesis, we found that the Wdb subunit localizes first along chromosomes in meiosis I, becoming restricted to the centromere region as MEI-S332 binds. Wdb and MEI-S332 show colocalization at the centromere region until release of sister-chromatid cohesion at the metaphase II/anaphase II transition. MEI-S332 is necessary for Wdb localization, but, additionally, both Wdb and Wrd are required for MEI-S332 localization. Thus, rather than MEI-S332 being hierarchical to PP2A B′, these proteins reciprocally ensure centromere localization of the complex. We analyzed functional relationships between MEI-S332 and the two forms of PP2A by quantifying meiotic chromosome segregation defects in double or triple mutants. These studies revealed that both Wdb and Wrd contribute to MEI-S332’s ability to ensure accurate segregation of sister chromatids, but, as in centromere localization, they do not act solely downstream of MEI-S332.


2016 ◽  
Vol 10 (4) ◽  
pp. 4 ◽  
Author(s):  
Mohna Bandyopadhyay ◽  
Scott Arbet ◽  
Clifton Bishop ◽  
Ashok Bidwai

Sign in / Sign up

Export Citation Format

Share Document