scholarly journals Assembly of smooth muscle myosin minifilaments: effects of phosphorylation and nucleotide binding.

1987 ◽  
Vol 105 (6) ◽  
pp. 3007-3019 ◽  
Author(s):  
K M Trybus ◽  
S Lowey

Small bipolar filaments, or "minifilaments," are formed when smooth muscle myosin is dialyzed against low ionic strength pyrophosphate or citrate/Tris buffers. Unlike synthetic filaments formed at approximately physiological ionic conditions, minifilaments are homogeneous as indicated by their hypersharp boundary during sedimentation velocity. Electron microscopy and hydrodynamic techniques were used to show that 20-22S smooth muscle myosin minifilaments are 380 nm long and composed of 12-14 molecules. By varying solvents, a continuum of different size polymers in the range of 15-30S could be obtained. Skeletal muscle myosin, in contrast, preferentially forms a stable 32S minifilament (Reisler, E., P. Cheung, and N. Borochov. 1986. Biophys. J. 49:335-342), suggesting underlying differences in the assembly properties of the two myosins. Addition of salt to the smooth muscle myosin minifilaments caused unidirectional growth into a longer "side-polar" type of filament, whereas bipolar filaments were consistently formed by skeletal muscle myosin. As with synthetic filaments, addition of 1 mM MgATP caused dephosphorylated minifilaments to dissociate to a mixture of folded monomers and dimers. Phosphorylation of the regulatory light chain prevented disassembly by nucleotide, even though it had no detectable effect on the structure of the minifilament. These results suggest that differences in filament stability as a result of phosphorylation are due largely to conformational changes occurring in the myosin head, and are not due to differences in filament packing.

Our programme this afternoon is in two parts. We first welcome Professor Hamoir and Dr Kendrick-Jones to describe the several ways in which smooth muscle myosin differs from skeletal muscle myosin. It was in this biochemical field that my own work, with Dr Jennifer Williams, lay some twelve years ago. We were impressed at that time by the very low ATPase activity of the uterus actomyosin, and by the fact that on trypsin treatment meromyosins were obtained in some ways similar to those of skeletal muscle. Speakers this afternoon will have far more to tell us of the nature, behaviour and structure of the myosins concerned. We were also interested in the properties and possible function of certain soluble proteins, including tropomyosin, which figure so largely in smooth muscle constitution. This subject also will come up today.


1992 ◽  
Vol 288 (3) ◽  
pp. 733-739 ◽  
Author(s):  
S J Winder ◽  
C Sutherland ◽  
M P Walsh

Thiosphosphorylated smooth muscle myosin and skeletal muscle myosin, both of which express Ca(2+)-independent actin-activated MgATPase activity, were used to examine the functional effects of calponin and caldesmon separately and together. Separately, calponin and caldesmon inhibited the actin-activated MgATPase activities of thiophosphorylated smooth muscle myosin and skeletal muscle myosin, calponin being significantly more potent in both systems. Calponin-mediated inhibition resulted from the interaction of calponin with actin since it could be reversed by increasing the actin concentration. Caldesmon had no significant influence on the calponin-induced inhibition of the smooth muscle actomyosin ATPase, nor did calponin have a significant effect on caldesmon-induced inhibition. In the skeletal muscle system, however, caldesmon was found to override the inhibitory effect of calponin. This difference probably reflects the lower affinity of skeletal muscle actin for calponin compared with that of smooth muscle actin. Calponin inhibition of skeletal muscle actin-activated myosin MgATPase was not significantly affected by troponin/tropomyosin, suggesting that the thin filament can readily accommodate calponin in addition to the troponin complex, or that calponin may be able to displace troponin. Calponin also inhibited acto-phosphorylated smooth muscle heavy meromyosin and acto-skeletal muscle heavy meromyosin MgATPases. The most appropriate protein preparations for analysis of the regulatory effects of calponin in the actomyosin system therefore would be smooth muscle actin, tropomyosin and thiophosphorylated myosin, and for analysis of the kinetic effects of calponin on the actomyosin ATPase cycle they would be smooth muscle actin, tropomyosin and phosphorylated heavy meromyosin, due to the latter's solubility.


1993 ◽  
Vol 292 (2) ◽  
pp. 439-444 ◽  
Author(s):  
S Maruta ◽  
M Ikebe

Methylanthraniloyl-8-azido-ATP (Mant-8-N3-ATP), which binds to the 20 kDa C-terminal tryptic fragment of skeletal-muscle myosin subfragment-1 [Maruta, Miyanishi and Matsuda (1989) Eur. J. Biochem. 184, 213-221], was synthesized and used as a probe of the conformational change of smooth-muscle myosin. Mant-8-N3-ATP, like ATP, induced the formation of the 10 S conformation at low ionic strength. In the presence of vanadate, smooth-muscle myosin formed a stable complex with Mant-8-N3-ADP, and this complex showed the 10 S→6 S transition of myosin. ATP-binding sites for 6 S (extended state) and 10 S (folded state) myosin were studied by photolabelling of myosin with Mant-8-N3-ADP. For both 6 S and 10 S myosin, Mant-8-N3-ATP was incorporated into the 29 kDa N-terminal tryptic fragment of myosin heavy chain. This is unlike the labelling of skeletal-muscle myosin, in which the 20 kDa C-terminal fragment is labelled. The labelling of 29 kDa fragment was diminished significantly by addition of ATP. These results suggest that the conformation of the ATP-binding site of smooth-muscle myosin is different from that of skeletal-muscle myosin. To examine further the possible differences in the labelling site between 6 S and 10 S myosin, the affinity-labelled 29 kDa fragment was subjected to complete proteolysis by lysylendo-peptidase. The fluorescent-labelled-peptide map suggested that the Mant-8-N3-ADP-binding sites for 6 S and 10 S myosin were identical.


1975 ◽  
Vol 67 (1) ◽  
pp. 93-104 ◽  
Author(s):  
T D Pollard

Electron micrographs of negatively stained synthetic myosin filaments reveal that surface projections, believed to be the heads of the constituent myosin molecules, can exist in two configurations. Some filaments have the projections disposed close to the filament backbone. Other filaments have all of their projections widely spread, tethered to the backbone by slender threads. Filaments formed from the myosins of skeletal muscle, smooth muscle, and platelets each have distinctive features, particularly their lengths. Soluble mixtures of skeletal muscle myosin with either smooth muscle myosin or platelet myosin were dialyzed against 0.1 M KC1 at pH 7 to determine whether the simultaneous presence of two types of myosin would influence the properties of the filaments formed. In every case, a single population of filaments formed from the mixtures. The resulting filaments are thought to be copolymers of the two types of myosin, for several reasons: (a) their length-frequency distribution is unimodal and differs from that predicted for a simple mixture of two types of myosin filaments; (b) their mean length is intermediate between the mean lengths of the filaments formed separately from the two myosins in the mixture; (c) each of the filaments has structural features characteristic of both of the myosins in the mixture; and (d) their size and shape are determined by the proportion of the two myosins in the mixture.


FEBS Letters ◽  
1981 ◽  
Vol 134 (2) ◽  
pp. 197-202 ◽  
Author(s):  
Hanna Strzelecka-Golaszewska ◽  
Apolinary Sobieszek

In actomyosin extracts from smooth muscle obtained at low ionic strength, an assembly of protein into long ribbon-shaped elements is observed to take place. These ribbons which range up to about 100 nm in width and up to many micrometres in length exhibit a strong repeat period of about 5.6 nm. Optical diffraction analysis shows that they possess a long repeat of 39.1 nm ± 0.4 nm. Tropomyosin purified from vertebrate smooth muscle can be induced to form the same ribbon-shaped elements. On removal of salt from solution the ribbons dissociate into fine filaments of average diameter about 8 nm which show subfilaments of about 2 to 3 nm diameter. In crude preparations the ribbons occur in solution together with myosin. If such preparations are left to stand for several days, ribbons may be found that show a visible 14 nm period which appears to arise from the presence of a regular arrangement of projections. Smooth muscle myosin alone assembles into cylindrical filaments which exhibit a regular arrangement of projections along their entire length, indicating an absence of polarity. These results indicate, as have those recently obtained from section material, that the myosin-containing component of vertebrate smooth muscle contains a protein that forms the core of the filament, which is responsible for its ribbon-like shape and which probably determines the polarity of the attached myosin molecules. It is proposed that this protein is tropomyosin.


1985 ◽  
Vol 101 (5) ◽  
pp. 1897-1902 ◽  
Author(s):  
J R Sellers ◽  
J A Spudich ◽  
M P Sheetz

In smooth muscles there is no organized sarcomere structure wherein the relative movement of myosin filaments and actin filaments has been documented during contraction. Using the recently developed in vitro assay for myosin-coated bead movement (Sheetz, M.P., and J.A. Spudich, 1983, Nature (Lond.)., 303:31-35), we were able to quantitate the rate of movement of both phosphorylated and unphosphorylated smooth muscle myosin on ordered actin filaments derived from the giant alga, Nitella. We found that movement of turkey gizzard smooth muscle myosin on actin filaments depended upon the phosphorylation of the 20-kD myosin light chains. About 95% of the beads coated with phosphorylated myosin moved at velocities between 0.15 and 0.4 micron/s, depending upon the preparation. With unphosphorylated myosin, only 3% of the beads moved and then at a velocity of only approximately 0.01-0.04 micron/s. The effects of phosphorylation were fully reversible after dephosphorylation with a phosphatase prepared from smooth muscle. Analysis of the velocity of movement as a function of phosphorylation level indicated that phosphorylation of both heads of a myosin molecule was required for movement and that unphosphorylated myosin appears to decrease the rate of movement of phosphorylated myosin. Mixing of phosphorylated smooth muscle myosin with skeletal muscle myosin which moves at 2 microns/s resulted in a decreased rate of bead movement, suggesting that the more slowly cycling smooth muscle myosin is primarily determining the velocity of movement in such mixtures.


1993 ◽  
Vol 290 (2) ◽  
pp. 437-442 ◽  
Author(s):  
N V Bogatcheva ◽  
A V Vorotnikov ◽  
K G Birukov ◽  
V P Shirinsky ◽  
N B Gusev

Smooth muscle caldesmon was phosphorylated by casein kinase II, and the effects of phosphorylation on the interaction of caldesmon and its chymotryptic peptides with myosin and tropomyosin were investigated. The N-terminal chymotryptic peptide of caldesmon of molecular mass 27 kDa interacted with myosin. Phosphorylation of Ser-73 catalysed by casein kinase II resulted in a 2-fold decrease in the affinity of the native caldesmon (or its 27 kDa N-terminal peptide) for smooth muscle myosin. At low ionic strength, caldesmon and its N-terminal peptides of molecular masses 25 and 27 kDa were retarded on a column of immobilized tropomyosin. Phosphorylation of Ser-73 led to a 2-4-fold decrease in the affinity of caldesmon (or its N-terminal peptides) for tropomyosin. Thus phosphorylation of Ser-73 catalysed by casein kinase II affects the interaction of caldesmon with both smooth muscle myosin and tropomyosin.


Dorothy M. Needham speaking. Since the pioneer work of Csapo and his colleagues, beginning about fifteen years ago, it has been realized that from uterine smooth muscle can be extracted a protein closely resembling skeletal-muscle actomyosin in its viscous behaviour, sedimentation rate and electrophoretic mobility. (See, for example, Csapo 1948, 1949, 1950, 1959; Csapo, Erdos, Naeslund & Snellman 1950; Naeslund & Snellman 1951). Later work, in which the properties of purified preparations of myosin, actin and actomyosin have been studied, bears out these earlier conclusions. Thus, for example, we have shown (Needham & Williams 1963 b ) that skeletal-muscle myosin will react normally with uterus actin to give the highly viscous actomyosin; and similarly uterus myosin with skeletal-muscle actin. In both types of experiment the results indicated that the two proteins associated together in about the same proportions as when both are derived from skeletal muscle. Uterus actomyosin may be fragmented by carefully controlled trypsin treatment giving light and heavy meromyosins which, so far as they have been studied, show similar properties to the meromyosins from skeletal-muscle actomyosin (Needham & Williams 1959; Cohen, Lowey & Kucera 1961). Smooth muscle, however, does contain very strikingly less actomyosin than striated muscle, only 6 to 10 mg/g wet wt as compared with about 70 mg/g wet wt in skeletal muscle (Needham & Williams 1963 a ).


Sign in / Sign up

Export Citation Format

Share Document