scholarly journals A lamin-independent pathway for nuclear envelope assembly.

1990 ◽  
Vol 111 (6) ◽  
pp. 2247-2259 ◽  
Author(s):  
J W Newport ◽  
K L Wilson ◽  
W G Dunphy

The nuclear envelope is composed of membranes, nuclear pores, and a nuclear lamina. Using a cell-free nuclear assembly extract derived from Xenopus eggs, we have investigated how these three components interact during nuclear assembly. We find that the Xenopus embryonic lamin protein LIII cannot bind directly to chromatin or membranes when each is present alone, but is readily incorporated into nuclei when both of the components are present together in an assembly extract. We find that depleting lamin LIII from an extract does not prevent formation of an envelope consisting of membranes and nuclear pores. However, these lamin-depleted envelopes are extremely fragile and fail to grow beyond a limited extent. This suggests that lamin assembly is not required during the initial steps of nuclear envelope formation, but is required for later growth and for maintaining the structural integrity of the envelope. We also present results showing that lamins may only be incorporated into nuclei after DNA has been encapsulated within an envelope and nuclear transport has been activated. With respect to nuclear function, our results show that the presence of a nuclear lamina is required for DNA synthesis to occur within assembled nuclei.

1994 ◽  
Vol 107 (11) ◽  
pp. 3045-3053 ◽  
Author(s):  
M. Hola ◽  
S. Castleden ◽  
M. Howard ◽  
R.F. Brooks

Demembranated sperm heads, detergent-isolated somatic nuclei and even naked DNA are efficiently replicated in cytoplasmic extracts of activated amphibian eggs, but only after nuclear assembly and the formation of an intact nuclear envelope. DNA synthesis has not previously been shown to be initiated in high-speed (200,000 g) supernatants of egg cytoplasm because they are depleted of the vesicular material required to support nuclear envelope formation. Here we show that mammalian nuclei prepared by scrape-rupture are able to initiate DNA replication in such high-speed supernatants. These nuclei begin DNA synthesis asynchronously. This asynchrony cannot be attributed to differences in the time taken for nuclear assembly. Instead, we suggest that the asynchrony reflects intrinsic differences between nuclei and that these differences are a major cause of cell cycle variability. Our demonstration of initiation in high-speed supernatants now enables the initiation of eukaryotic DNA synthesis to be studied independently of nuclear assembly.


1994 ◽  
Vol 107 (12) ◽  
pp. 3259-3269 ◽  
Author(s):  
C.J. Hutchison ◽  
J.M. Bridger ◽  
L.S. Cox ◽  
I.R. Kill

The major residual structure that remains associated with the nuclear envelope following extraction of isolated nuclei or oocyte germinal vesicles with non-ionic detergents, nucleases and high salt is the lamina (Fawcett, 1966; Aaronson and Blobel, 1975; Dwyer and Blobel, 1976). The nuclear lamina is composed of intermediate filament proteins, termed lamins (Gerace and Blobel, 1980; Shelton et al., 1980), which polymerise to form a basket-weave lattice of fibrils, which covers the entire inner surface of the nuclear envelope and interlinks nuclear pores (Aebi et al., 1986; Stewart and Whytock, 1988; Goldberg and Allen, 1992). At mitosis, the nuclear envelope and the lamina both break down to allow chromosome segregation. As a consequence, each structure has to be rebuilt during anaphase and telophase, allowing cells an opportunity to reposition chromosomes (Heslop-Harrison and Bennett, 1990) and to reorganise looped chromatin domains (Franke, 1974; Franke et al., 1981; Hochstrasser et al., 1986), which may in turn control the use of subsets of genes. Because of the position that it occupies, its dynamics during mitosis and the fact that it is an essential component of proliferating cells, the lamina has been assigned a number of putative roles both in nuclear metabolism and in nuclear envelope assembly (Burke and Gerace, 1986; Nigg, 1989). However, to date there is little clear cut evidence that satisfactorily explains the function of the lamina in relation to its structure. In this Commentary we will describe some of the recent work that addresses this problem and attempt to provide a unified model for the role of lamins in nuclear envelope assembly and for the lamina in the initiation of DNA replication.


2008 ◽  
Vol 182 (5) ◽  
pp. 911-924 ◽  
Author(s):  
Daniel J. Anderson ◽  
Martin W. Hetzer

During mitosis in metazoans, segregated chromosomes become enclosed by the nuclear envelope (NE), a double membrane that is continuous with the endoplasmic reticulum (ER). Recent in vitro data suggest that NE formation occurs by chromatin-mediated reorganization of the tubular ER; however, the basic principles of such a membrane-reshaping process remain uncharacterized. Here, we present a quantitative analysis of nuclear membrane assembly in mammalian cells using time-lapse microscopy. From the initial recruitment of ER tubules to chromatin, the formation of a membrane-enclosed, transport-competent nucleus occurs within ∼12 min. Overexpression of the ER tubule-forming proteins reticulon 3, reticulon 4, and DP1 inhibits NE formation and nuclear expansion, whereas their knockdown accelerates nuclear assembly. This suggests that the transition from membrane tubules to sheets is rate-limiting for nuclear assembly. Our results provide evidence that ER-shaping proteins are directly involved in the reconstruction of the nuclear compartment and that morphological restructuring of the ER is the principal mechanism of NE formation in vivo.


1988 ◽  
Vol 107 (1) ◽  
pp. 57-68 ◽  
Author(s):  
K L Wilson ◽  
J Newport

The reformation of functioning organelles at the end of mitosis presents a problem in vesicle targeting. Using extracts made from Xenopus laevis frog eggs, we have studied in vitro the vesicles that reform the nuclear envelope. In the in vitro assay, nuclear envelope growth is linear with time. Furthermore, the final surface area of the nuclear envelopes formed is directly dependent upon the amount of membrane vesicles added to the assay. Egg membrane vesicles could be fractionated into two populations, only one of which was competent for nuclear envelope assembly. We found that vesicles active in nuclear envelope assembly contained markers (BiP and alpha-glucosidase II) characteristic of the endoplasmic reticulum (ER), but that the majority of ER-derived vesicles do not contribute to nuclear envelope size. This functional distinction between nuclear vesicles and ER-derived vesicles implies that nuclear vesicles are unique and possess at least one factor required for envelope assembly that is lacking in other vesicles. Consistent with this, treatment of vesicles with trypsin destroyed their ability to form a nuclear envelope; electron microscopic studies indicate that the trypsin-sensitive proteins is required for vesicles to bind to chromatin. However, the protease-sensitive component(s) is resistant to treatments that disrupt protein-protein interactions, such as high salt, EDTA, or low ionic strength solutions. We propose that an integral membrane protein, or protein tightly associated with the membrane, is critical for nuclear vesicle targeting or function.


1995 ◽  
Vol 108 (11) ◽  
pp. 3451-3461 ◽  
Author(s):  
M. Goldberg ◽  
H. Jenkins ◽  
T. Allen ◽  
W.G. Whitfield ◽  
C.J. Hutchison

Xenopus egg extracts which assemble replication competent nuclei in vitro were depleted of lamin B3 using monoclonal antibody L6 5D5 linked to paramagnetic beads. After depletion, the extracts were still capable of assembling nuclei around demembranated sperm heads. Using field emission in lens scanning electron microscopy (FEISEM) we show that most nuclei assembled in lamin B3-depleted extracts have continuous nuclear envelopes and well formed nuclear pores. However, several consistent differences were observed. Most nuclei were small and only attained diameters which were half the size of controls. In a small number of nuclei, nuclear pore baskets, normally present on the inner aspect of the nuclear envelope, appeared on its outer surface. Finally, the assembly of nuclear pores was slower in lamin B3-depleted extracts, indicating a slower overall rate of nuclear envelope assembly. The results of FEISEM were confirmed using conventional TEM thin sections, where again the majority of nuclei assembled in lamin B3-depleted extracts had well formed double unit membranes containing a high density of nuclear pores. Since nuclear envelope assembly was mostly normal but slow in these nuclei, the lamin content of ‘depleted’ extracts was investigated. While lamin B3 was recovered efficiently from cytosolic and membrane fractions by our procedure, a second minor lamin isoform, which has characteristics similar to those of the somatic lamin B2, remained in the extract. Thus it is likely that this lamin is necessary for nuclear envelope assembly. However, while lamin B2 did not co-precipitate with lamin B3 during immunodepletion experiments, several protein species did specifically associate with lamin B3 on paramagnetic immunobeads. The major protein species associated with lamin B3 migrated with molecular masses of 102 kDa and 57 kDa, respectively, on one-dimensional polyacrylamide gels. On two-dimensional O'Farrell gels the mobility of the 102 kDa protein was identical to the mobility of a major nuclear matrix protein, indicating a specific association between lamin B3 and other nuclear matrix proteins. Nuclei assembled in lamin B3-depleted extracts did not assemble a lamina, judged by indirect immunofluorescence, and failed to initiate semi-conservative DNA replication. However, by reinoculating depleted extracts with purified lamin B3, nuclear lamina assembly and DNA replication could both be rescued. Thus it seems likely that the inability of lamin-depleted extracts to assemble a replication competent nucleus is a direct consequence of a failure to assemble a lamina.


1995 ◽  
Vol 108 (1) ◽  
pp. 235-244 ◽  
Author(s):  
J. Murphy ◽  
C.M. Crompton ◽  
S. Hainey ◽  
G.A. Codd ◽  
C.J. Hutchison

Cell-free extracts of Xenopus eggs support nuclear assembly and DNA replication in vitro. Extracts supplemented with the protein phosphatase inhibitor microcystin-LR displayed various inhibitory effects at different concentrations of the toxin. In the presence of cycloheximide, additions of microcystin did not induce histone H1-kinase activity. Nevertheless, increasing concentrations of microcystin did sequentially prevent DNA replication, nuclear lamina assembly and nuclear envelope assembly. DNA replication was prevented when microcystin was added at 250 nM. Furthermore, this effect could be reversed after the addition of the catalytic sub-unit of protein phosphatase 2A to inhibited extracts. At a concentration of 250 nM microcystin, nuclear membrane assembly, nuclear lamina assembly and nuclear transport all occurred in egg extracts. In addition single-stranded M13 DNA replication was also permitted. However, it appeared that replicase assembly was not completed, since nuclei assembled in microcystin-treated extracts displayed an unusual distribution of proliferating cell nuclear antigen (PCNA). Although PCNA was located at sites that resembled pre-replication foci, this nuclear protein was readily solubilised when nuclei were isolated and extracted sequentially with Triton, nucleases and salts. Despite this, nuclei containing pre-assembled replication forks could synthesise DNA when transferred into microcystin-treated extracts.


2021 ◽  
Author(s):  
Anna Mammel ◽  
Heather Z Huang ◽  
Amanda L Gunn ◽  
Emma Choo ◽  
Emily M Hatch

Micronuclei are derived from missegregated chromosomes and frequently lose membrane integrity, leading to DNA damage, innate immune activation, and metastatic signaling. Here we demonstrate that two characteristics of the trapped chromosome, length and gene density, are key contributors to micronuclei membrane stability in human cells. Chromosome length is proportional to micronuclei size, and gene density has an additive effect with micronucleus size on membrane stability. We demonstrate that these results are not due to chromosome-specific differences in spindle position or initial nuclear pore complex recruitment during post-mitotic nuclear envelope assembly. We find that chromosome length and micronuclei size strongly correlate with lamin B1 and nuclear pore density in intact micronuclei. Unexpectedly, lamin B1 levels do not predict nuclear lamina organization and membrane stability. Instead, small gene-dense micronuclei have decreased nuclear lamina gaps compared to large micronuclei, despite very low levels of lamin B1. Our data strongly suggest that nuclear envelope composition defects previously correlated with membrane rupture only partly explain membrane stability in micronuclei. We propose that an unknown factor linked to gene density has a separate function that inhibits the appearance of nuclear lamina gaps and delays membrane rupture until late in the cell cycle.


2021 ◽  
Vol 5 (2) ◽  
pp. e202101210
Author(s):  
Anna E Mammel ◽  
Heather Z Huang ◽  
Amanda L Gunn ◽  
Emma Choo ◽  
Emily M Hatch

Micronuclei are derived from missegregated chromosomes and frequently lose membrane integrity, leading to DNA damage, innate immune activation, and metastatic signaling. Here, we demonstrate that two characteristics of the trapped chromosome, length and gene density, are key contributors to micronuclei membrane stability and determine the timing of micronucleus rupture. We demonstrate that these results are not due to chromosome-specific differences in spindle position or initial protein recruitment during post-mitotic nuclear envelope assembly. Micronucleus size strongly correlates with lamin B1 levels and nuclear pore density in intact micronuclei, but, unexpectedly, lamin B1 levels do not completely predict nuclear lamina organization or membrane stability. Instead, small gene-dense micronuclei have decreased nuclear lamina gaps compared to large micronuclei, despite very low levels of lamin B1. Our data strongly suggest that nuclear envelope composition defects previously correlated with membrane rupture only partly explain membrane stability in micronuclei. We propose that an unknown factor linked to gene density has a separate function that inhibits the appearance of nuclear lamina gaps and delays membrane rupture until late in the cell cycle.


1992 ◽  
Vol 103 (2) ◽  
pp. 407-414 ◽  
Author(s):  
A.K. McNulty ◽  
M.J. Saunders

A major structural component of the inner face of the nuclear envelope in vertebrates and invertebrates is the nuclear lamina, an array of 1–3 extrinsic membrane proteins, lamins A, B and C. These proteins are highly homologous to intermediate filaments and are classified as type V. We report the first purification, antigenic characterization and immunocytochemical localization of putative plant lamin proteins from pea nuclei. We conclude that plant cells contain this ancestral class of intermediate filaments in their nuclei and that regulation of nuclear envelope assembly/disassembly and mitosis in plants may be similar to that in animal cells.


2002 ◽  
Vol 13 (9) ◽  
pp. 3138-3147 ◽  
Author(s):  
Kenneth G. Geles ◽  
Jeffrey J. Johnson ◽  
Sena Jong ◽  
Stephen A. Adam

The importin α family of nuclear-cytoplasmic transport factors mediates the nuclear localization of proteins containing classical nuclear localization signals. Metazoan animals express multiple importin α proteins, suggesting their possible roles in cell differentiation and development. Adult Caenorhabditis elegans hermaphrodites express three importin α proteins, IMA-1, IMA-2, and IMA-3, each with a distinct expression and localization pattern. IMA-2 was expressed exclusively in germ line cells from the early embryonic through adult stages. The protein has a dynamic pattern of localization dependent on the stage of the cell cycle. In interphase germ cells and embryonic cells, IMA-2 is cytoplasmic and nuclear envelope associated, whereas in developing oocytes, the protein is cytoplasmic and intranuclear. During mitosis in germ line cells and embryos, IMA-2 surrounded the condensed chromosomes but was not directly associated with the mitotic spindle. The timing of IMA-2 nuclear localization suggested that the protein surrounded the chromosomes after fenestration of the nuclear envelope in prometaphase. Depletion of IMA-2 by RNA-mediated gene interference (RNAi) resulted in embryonic lethality and a terminal aneuploid phenotype.ima-2(RNAi) embryos have severe defects in nuclear envelope formation, accumulating nucleoporins and lamin in the cytoplasm. We conclude that IMA-2 is required for proper chromosome dynamics in germ line and early embryonic mitosis and is involved in nuclear envelope assembly at the conclusion of mitosis.


Sign in / Sign up

Export Citation Format

Share Document