scholarly journals Mitotic spindle assembly by two different pathways in vitro.

1991 ◽  
Vol 112 (5) ◽  
pp. 925-940 ◽  
Author(s):  
K E Sawin ◽  
T J Mitchison

We have used Xenopus egg extracts to study spindle morphogenesis in a cell-free system and have identified two pathways of spindle assembly in vitro using methods of fluorescent analogue cytochemistry. When demembranated sperm nuclei are added to egg extracts arrested in a mitotic state, individual nuclei direct the assembly of polarized microtubule arrays, which we term half-spindles; half-spindles then fuse pairwise to form bipolar spindles. In contrast, when sperm nuclei are added to extracts that are induced to enter interphase and arrested in the following mitosis, a single sperm nucleus can direct the assembly of a complete spindle. We find that microtubule arrays in vitro are strongly biased towards chromatin, but this does not depend on specific kinetochore-microtubule interactions. Indeed, although we have identified morphological and probably functional kinetochores in spindles assembled in vitro, kinetochores appear not to play an obligate role in the establishment of stable, bipolar microtubule arrays in either assembly pathway. Features of the two pathways suggest that spindle assembly involves a hierarchy of selective microtubule stabilization, involving both chromatin-microtubule interactions and antiparallel microtubule-microtubule interactions, and that fundamental molecular interactions are probably the same in both pathways. This in vitro reconstitution system should be useful for identifying the molecules regulating the generation of asymmetric microtubule arrays and for understanding spindle morphogenesis in general.

1997 ◽  
Vol 138 (3) ◽  
pp. 615-628 ◽  
Author(s):  
Rebecca Heald ◽  
Régis Tournebize ◽  
Anja Habermann ◽  
Eric Karsenti ◽  
Anthony Hyman

In Xenopus egg extracts, spindles assembled around sperm nuclei contain a centrosome at each pole, while those assembled around chromatin beads do not. Poles can also form in the absence of chromatin, after addition of a microtubule stabilizing agent to extracts. Using this system, we have asked (a) how are spindle poles formed, and (b) how does the nucleation and organization of microtubules by centrosomes influence spindle assembly? We have found that poles are morphologically similar regardless of their origin. In all cases, microtubule organization into poles requires minus end–directed translocation of microtubules by cytoplasmic dynein, which tethers centrosomes to spindle poles. However, in the absence of pole formation, microtubules are still sorted into an antiparallel array around mitotic chromatin. Therefore, other activities in addition to dynein must contribute to the polarized orientation of microtubules in spindles. When centrosomes are present, they provide dominant sites for pole formation. Thus, in Xenopus egg extracts, centrosomes are not necessarily required for spindle assembly but can regulate the organization of microtubules into a bipolar array.


2003 ◽  
Vol 161 (6) ◽  
pp. 1041-1051 ◽  
Author(s):  
Sarah M. Wignall ◽  
Renée Deehan ◽  
Thomas J. Maresca ◽  
Rebecca Heald

Chromosome condensation is required for the physical resolution and segregation of sister chromatids during cell division, but the precise role of higher order chromatin structure in mitotic chromosome functions is unclear. Here, we address the role of the major condensation machinery, the condensin complex, in spindle assembly and function in Xenopus laevis egg extracts. Immunodepletion of condensin inhibited microtubule growth and organization around chromosomes, reducing the percentage of sperm nuclei capable of forming spindles, and causing dramatic defects in anaphase chromosome segregation. Although the motor CENP-E was recruited to kinetochores pulled poleward during anaphase, the disorganized chromosome mass was not resolved. Inhibition of condensin function during anaphase also inhibited chromosome segregation, indicating its continuous requirement. Spindle assembly around DNA-coated beads in the absence of kinetochores was also impaired upon condensin inhibition. These results support an important role for condensin in establishing chromosomal architecture necessary for proper spindle assembly and chromosome segregation.


2018 ◽  
Author(s):  
Maiko Kitaoka ◽  
Rebecca Heald ◽  
Romain Gibeaux

ABSTRACTEgg extracts of the African clawed frog Xenopus laevis have provided a cell-free system instrumental in elucidating events of the cell cycle, including mechanisms of spindle assembly. Comparison with extracts from the diploid Western clawed frog, Xenopus tropicalis, which is smaller at the organism, cellular and subcellular levels, has enabled the identification of spindle size scaling factors. We set out to characterize the Marsabit clawed frog, Xenopus borealis, which is intermediate in size between the two species, but more recently diverged in evolution from X. laevis than X. tropicalis. X. borealis eggs were slightly smaller than those of X. laevis, and slightly smaller spindles were assembled in egg extracts. Interestingly, microtubule distribution across the length of the X. borealis spindles differed from both X. laevis and X. tropicalis. Extract mixing experiments revealed common scaling phenomena among Xenopus species, while characterization of spindle factors katanin, TPX2, and Ran indicate that X. borealis spindles possess both X. laevis and X. tropicalis features. Thus, X. borealis egg extract provides a third in vitro system to investigate interspecies scaling and spindle morphometric variation.


2001 ◽  
Vol 153 (1) ◽  
pp. 149-158 ◽  
Author(s):  
Priya Prakash Budde ◽  
Akiko Kumagai ◽  
William G. Dunphy ◽  
Rebecca Heald

Oncoprotein 18 (Op18) is a microtubule-destabilizing protein that is negatively regulated by phosphorylation. To evaluate the role of the three Op18 phosphorylation sites in Xenopus (Ser 16, 25, and 39), we added wild-type Op18, a nonphosphorylatable triple Ser to Ala mutant (Op18-AAA), and to mimic phosphorylation, a triple Ser to Glu mutant (Op18-EEE) to egg extracts and monitored spindle assembly. Op18-AAA dramatically decreased microtubule length and density, while Op18-EEE did not significantly affect spindle microtubules. Affinity chromatography with these proteins revealed that the microtubule-destabilizing activity correlated with the ability of Op18 to bind tubulin. Since hyperphosphorylation of Op18 is observed upon addition of mitotic chromatin to extracts, we reasoned that chromatin-associated proteins might play a role in Op18 regulation. We have performed a preliminary characterization of the chromatin proteins recruited to DNA beads, and identified the Xenopus polo-like kinase Plx1 as a chromatin-associated kinase that regulates Op18 phosphorylation. Depletion of Plx1 inhibits chromatin-induced Op18 hyperphosphorylation and spindle assembly in extracts. Therefore, Plx1 may promote microtubule stabilization and spindle assembly by inhibiting Op18.


2013 ◽  
Vol 24 (22) ◽  
pp. 3522-3533 ◽  
Author(s):  
Shusheng Wang ◽  
Stephanie A. Ketcham ◽  
Arne Schön ◽  
Benjamin Goodman ◽  
Yueju Wang ◽  
...  

Lis1, Nudel/NudE, and dynactin are regulators of cytoplasmic dynein, a minus end–directed, microtubule (MT)-based motor required for proper spindle assembly and orientation. In vitro studies have shown that dynactin promotes processive movement of dynein on MTs, whereas Lis1 causes dynein to enter a persistent force-generating state (referred to here as dynein stall). Yet how the activities of Lis1, Nudel/NudE, and dynactin are coordinated to regulate dynein remains poorly understood in vivo. Working in Xenopus egg extracts, we show that Nudel/NudE facilitates the binding of Lis1 to dynein, which enhances the recruitment of dynactin to dynein. We further report a novel Lis1-dependent dynein–dynactin interaction that is essential for the organization of mitotic spindle poles. Finally, using assays for MT gliding and spindle assembly, we demonstrate an antagonistic relationship between Lis1 and dynactin that allows dynactin to relieve Lis1-induced dynein stall on MTs. Our findings suggest the interesting possibility that Lis1 and dynactin could alternately engage with dynein to allow the motor to promote spindle assembly.


1998 ◽  
pp. 385-412 ◽  
Author(s):  
Arshad Desai ◽  
Andrew Murray ◽  
Timothy J. Mitchison ◽  
Claire E. Walczak

1995 ◽  
Vol 6 (2) ◽  
pp. 227-236 ◽  
Author(s):  
J Rosenblatt ◽  
P Peluso ◽  
T J Mitchison

Non-muscle cells contain 15-500 microM actin, a large fraction of which is unpolymerized. Thus, the concentration of unpolymerized actin is well above the critical concentration for polymerization in vitro (0.2 microM). This fraction of actin could be prevented from polymerization by being ADP bound (therefore less favored to polymerize) or by being ATP bound and sequestered by a protein such as thymosin beta 4, or both. We isolated the unpolymerized actin from Xenopus egg extracts using immobilized DNase 1 and assayed the bound nucleotide. High-pressure liquid chromatography analysis showed that the bulk of soluble actin is ATP bound. Analysis of actin-bound nucleotide exchange rates suggested the existence of two pools of unpolymerized actin, one of which exchanges nucleotide relatively rapidly and another that apparently does not exchange. Native gel electrophoresis of Xenopus egg extracts demonstrated that most of the soluble actin exists in complexes with other proteins, one of which might be thymosin beta 4. These results are consistent with actin polymerization being controlled by the sequestration and release of ATP-bound actin, and argue against nucleotide exchange playing a major role in regulating actin polymerization.


2004 ◽  
Vol 15 (12) ◽  
pp. 5318-5328 ◽  
Author(s):  
Stéphane Brunet ◽  
Teresa Sardon ◽  
Timo Zimmerman ◽  
Torsten Wittmann ◽  
Rainer Pepperkok ◽  
...  

TPX2 has multiple functions during mitosis, including microtubule nucleation around the chromosomes and the targeting of Xklp2 and Aurora A to the spindle. We have performed a detailed domain functional analysis of TPX2 and found that a large N-terminal domain containing the Aurora A binding peptide interacts directly with and nucleates microtubules in pure tubulin solutions. However, it cannot substitute the endogenous TPX2 to support microtubule nucleation in response to Ran guanosine triphosphate (GTP) and spindle assembly in egg extracts. By contrast, a large C-terminal domain of TPX2 that does not bind directly to pure microtubules and does not bind Aurora A kinase rescues microtubule nucleation in response to RanGTP and spindle assembly in TPX2-depleted extract. These and previous results suggest that under physiological conditions, TPX2 is essential for microtubule nucleation around chromatin and functions in a network of other molecules, some of which also are regulated by RanGTP.


1995 ◽  
Vol 108 (6) ◽  
pp. 2187-2196 ◽  
Author(s):  
L.J. Wangh ◽  
D. DeGrace ◽  
J.A. Sanchez ◽  
A. Gold ◽  
Y. Yeghiazarians ◽  
...  

Rapid genome replication is one of the hallmarks of the frog embryonic cell cycle. We report here that complete reactivation of quiescent somatic cell nuclei in Xenopus egg extracts depends on prior restructuring of the nuclear substrate and prior preparation of cytoplasmic extract with the highest capacity to initiate and sustain DNA synthesis. Nuclei from mature erythrocytes swell, replicate their DNA efficiently, and enter mitosis in frozen/thawed extracts prepared from activated Xenopus eggs, provided the nuclei are first treated with trypsin, heparin, and an extract prepared from unactivated, meiotically arrested, eggs. Optimal replicating extracts are prepared from large batches of unfertilized eggs that are synchronously activated into the cell cycle for 28 minutes (at 20 degrees C). Because the Xenopus cell cycle progresses so rapidly, extracts prepared just a few minutes before or after this time have substantially lower DNA synthetic capacities. At the optimal time and temperature, eggs have just reached the G1/S boundary of the first cell cycle. This fact was revealed by injecting and replicating an SV40 plasmid in intact unfertilized eggs as described previously. We estimate that under optimal conditions approximately 6.14 × 10(9) base pairs of DNA/per nucleus are synthesized in 30–40 minutes, a rate that rivals that observed in the zygotic nucleus. The findings reported here are one step in our long term effort to develop a new in vitro/in vivo approach to nuclear transplantation. Nuclear transplantation in amphibian embryos has been used to establish that the genomes of many types of differentiated somatic cells are pluripotent. But very few such nuclei have ever developed into advanced tadpoles or adult frogs, probably because somatic nuclei injected directly into activated eggs fail to reactivate quickly enough to avoid being damaged during first mitosis. We have already shown that unfertilized eggs can be injected prior to activation of the first cell cycle. Future experiments will reveal whether in vitro reactivated somatic cell nuclei transplanted into such eggs reliably reach advanced stages of development.


Sign in / Sign up

Export Citation Format

Share Document