scholarly journals Activation of the simian virus 40 (SV40) genome abrogates sensitivity to AVP in a rabbit collecting tubule cell line by repressing membrane expression of AVP receptors.

1991 ◽  
Vol 113 (4) ◽  
pp. 951-962 ◽  
Author(s):  
D Prié ◽  
P M Ronco ◽  
B Baudouin ◽  
M Géniteau-Legendre ◽  
M Antoine ◽  
...  

To analyze the role of SV40 genome in the phenotypic alterations previously observed in SV40-transformed cell lines, we infected rabbit renal cortical cells with a temperature-sensitive SV40 mutant strain (tsA58) and compared the cell phenotypes at temperatures permissive (33 degrees C) and restrictive (39.5 degrees C) for SV40 genome expression. At both temperatures, the resulting cell line (RC.SVtsA58) expresses cytokeratin and uvomorulin, but epithelial differentiation is more elaborate at 39.5 degrees C as shown by the formation of a well-organized cuboidal monolayer with numerous tight junctions and desmosomes. Functional characteristics are also markedly influenced by the culture temperature: cells grown at 33 degrees C respond only to isoproterenol (ISO, 10(-6) M) by a sevenfold increase in cAMP cell content above basal values; in contrast, when transferred to 39.5 degrees C, they exhibit increased sensitivity to ISO (ISO/basal: 19.1) and a dramatic response to 10(-7) M dDarginine vasopressin (dDAVP/basal: 18.2, apparent Ka: 5 X 10(-9) M) which peaks 48 h after the temperature shift. The latter is associated with membrane expression of V2-type AVP receptors (approximately 50 fmol/10(6) cells) which are undetectable when SV40 genome is activated (33 degrees C). Clonal analysis, additivity studies, and desensitization experiments argue for the presence of a single cell type responsive to both AVP and ISO. The characteristics of the RC. SVtsA58 cell line at 39.5 degrees C (effector-stimulated cAMP profile, lack of expression of brush-border hydrolases and Tamm-Horsfall protein) suggest that it originates from the cortical collecting tubule, and probably from principal cells.

1999 ◽  
Vol 202 (4) ◽  
pp. 461-473
Author(s):  
R.I. Cohen ◽  
R. Mckay ◽  
G. Almazan

To facilitate the study of the molecular events underlying the development of optic-nerve-derived oligodendrocytes and their growth-factor-related signal transduction events, we immortalized perinatal rat optic nerve cells with a temperature-sensitive simian virus 40 large T-antigen, carrying the tsA58 and U19 mutations, via a retrovirus vector. The line, tsU19-9, was selected on the basis of the expression of the neural precursor marker nestin. At the permissive temperature, 33 degreesC, tsU19-9 cells had a flat epithelial morphology. In contrast, following exposure to platelet-derived growth factor (PDGF), a factor important in the lineage progression of oligodendrocytes, or in the presence of dibutyryl cyclic AMP at 39 degreesC (the non-permissive temperature), the cells underwent morphological and antigenic differentiation to cells characteristic of the oligodendrocyte lineage. We used this cell line to investigate the binding characteristics of PDGF and related signalling cascades. Competition binding, phosphoinositide hydrolysis and intracellular Ca2+ mobilization assays all demonstrated that the three different isoforms of PDGF (AA, AB and BB) bound to and acted on the cell line. Overnight exposure to forskolin, a treatment that initiated morphological and phenotypic progression into an oligodendrocyte lineage, decreased PDGF-BB-induced intracellular Ca2+ mobilization and inhibited basal and PDGF-stimulated [3H]thymidine incorporation. Our results demonstrate that tsU19-9 may serve as a resource to study early optic-nerve oligodendrocyte development.


1983 ◽  
Vol 3 (6) ◽  
pp. 1138-1145 ◽  
Author(s):  
R Seif ◽  
I Seif ◽  
J Wantyghem

Rat 3T3 cells transformed by simian virus 40 were injected into rats to examine their capacity to develop into tumors. Both large T-dependent (N) transformants and large T-independent (A) transformants were used. All the transformed cell lines contained large T and small t and could multiply efficiently in agar. Only some transformants could develop into tumors. All tumor cells examined had lost both large T and small t. Tumor cells in which the viral genome could still be detected were found together with tumor cells in which the simian virus 40 DNA could no longer be detected. N transformants which displayed the transformed phenotype in a temperature-sensitive manner became temperature insensitive during tumor formation.


1994 ◽  
Vol 266 (6) ◽  
pp. C1628-C1638 ◽  
Author(s):  
D. Prie ◽  
J. C. Dussaule ◽  
B. Lelongt ◽  
M. Geniteau-Legendre ◽  
F. Chatelet ◽  
...  

We used a dual immunomorphological and physiological approach to demonstrate that the RC.SVtsA58 rabbit cortical cell line exhibits features of highly differentiated cortical collecting tubule (CCT) principal cells (PC). First, we raised monoclonal antibodies against RC.SVtsA58 cells and screened their reactivity with the rabbit kidney: three were specific for the basolateral domain of CCT PC and bound to 100% of RC.SVtsA58 cells. Second, we showed that bradykinin, atrial natriuretic peptide, and prostaglandin E2 increased intracellular Ca2+, guanosine 3',5'-cyclic monophosphate, and adenosine 3',5'-cyclic monophosphate (cAMP), respectively. In addition, 10 nM bradykinin inhibited desmopressin-elicited cAMP production by > or = 40%; this effect was suppressed by 10 microM of indomethacin and was reproduced with 1 nM of prostaglandin E2, indicating the conservation of arginine vasopressin-related regulatory loops described in microdissected CCT and freshly isolated cells. However, RC.SVtsA58 cells also express intercalated cell markers even after repeated cloning, which suggests that tsA58, a temperature-sensitive strain of simian virus-40, has transformed a multipotent type of PC in keeping with the cell interconversion hypothesis.


1983 ◽  
Vol 3 (6) ◽  
pp. 1013-1020 ◽  
Author(s):  
J Y Chou

A clonal rat adult hepatocyte cell line (RALA255-10G) was shown to be temperature sensitive (ts) for growth and differentiation. Glucocorticoid was necessary to maintain the maximal levels of differentiated functions in these cells. The RALA255-10G cell line was established by transforming primary adult hepatocytes with simian virus 40 tsA255 virus that is temperature sensitive for maintenance of transformation. At the permissive temperature (33 degrees C), RALA255-10G cells showed characteristics of malignant transformation, synthesized low levels of albumin and transferrin, and contained low levels of functional receptors for glucagon. At the nonpermissive temperature (40 degrees C), these cells regain the normal differentiated phenotype, and the levels of these three hepatic functions were increased. Induction of albumin and transferrin production by RALA255-10G cells at 40 degrees C was shown to be the result of the increase in the biosynthesis of these proteins. Furthermore, the albumin and transferrin produced by these cells were immunologically and electrophoretically indistinguishable from authentic rat albumin and transferrin. Glucocorticoid, which reduced the growth rate and saturation density of RALA255-10G cells at 33 degrees C, was absolutely required by these cells to synthesize albumin at both temperatures. This hormone also enhanced transferrin production and glucagon response. Our data indicate that glucocorticoid hormone is one of the factors that maintain adult hepatocytes in a differentiated state.


Endocrinology ◽  
1995 ◽  
Vol 136 (5) ◽  
pp. 1913-1919 ◽  
Author(s):  
R K Srivastava ◽  
Y Gu ◽  
M Zilberstein ◽  
J S Ou ◽  
K E Mayo ◽  
...  

2009 ◽  
Vol 11 (11) ◽  
pp. 1646-1654 ◽  
Author(s):  
Nobuko Mataga ◽  
Masato Tamura ◽  
Nobuyuki Yanai ◽  
Tamayuki Shinomura ◽  
Koji Kimata ◽  
...  

1996 ◽  
Vol 21 (6) ◽  
pp. 459-468 ◽  
Author(s):  
Keiichi Kato ◽  
Seiichi Ishiguro ◽  
Hiroaki Yamamoto ◽  
Nobuaki Yanai ◽  
Masao Obinata ◽  
...  

1983 ◽  
Vol 3 (6) ◽  
pp. 1013-1020
Author(s):  
J Y Chou

A clonal rat adult hepatocyte cell line (RALA255-10G) was shown to be temperature sensitive (ts) for growth and differentiation. Glucocorticoid was necessary to maintain the maximal levels of differentiated functions in these cells. The RALA255-10G cell line was established by transforming primary adult hepatocytes with simian virus 40 tsA255 virus that is temperature sensitive for maintenance of transformation. At the permissive temperature (33 degrees C), RALA255-10G cells showed characteristics of malignant transformation, synthesized low levels of albumin and transferrin, and contained low levels of functional receptors for glucagon. At the nonpermissive temperature (40 degrees C), these cells regain the normal differentiated phenotype, and the levels of these three hepatic functions were increased. Induction of albumin and transferrin production by RALA255-10G cells at 40 degrees C was shown to be the result of the increase in the biosynthesis of these proteins. Furthermore, the albumin and transferrin produced by these cells were immunologically and electrophoretically indistinguishable from authentic rat albumin and transferrin. Glucocorticoid, which reduced the growth rate and saturation density of RALA255-10G cells at 33 degrees C, was absolutely required by these cells to synthesize albumin at both temperatures. This hormone also enhanced transferrin production and glucagon response. Our data indicate that glucocorticoid hormone is one of the factors that maintain adult hepatocytes in a differentiated state.


Sign in / Sign up

Export Citation Format

Share Document