scholarly journals Transformation of Drosophila melanogaster with the wild-type myosin heavy-chain gene: rescue of mutant phenotypes and analysis of defects caused by overexpression.

1994 ◽  
Vol 126 (3) ◽  
pp. 689-699 ◽  
Author(s):  
R M Cripps ◽  
K D Becker ◽  
M Mardahl ◽  
W A Kronert ◽  
D Hodges ◽  
...  

We have transformed Drosophila melanogaster with a genomic construct containing the entire wild-type myosin heavy-chain gene, Mhc, together with approximately 9 kb of flanking DNA on each side. Three independent lines stably express myosin heavy-chain protein (MHC) at approximately wild-type levels. The MHC produced is functional since it rescues the mutant phenotypes of a number of different Mhc alleles: the amorphic allele Mhc1, the indirect flight muscle and jump muscle-specific amorphic allele Mhc10, and the hypomorphic allele Mhc2. We show that the Mhc2 mutation is due to the insertion of a transposable element in an intron of Mhc. Since a reduction in MHC in the indirect flight muscles alters the myosin/actin protein ratio and results in myofibrillar defects, we determined the effects of an increase in the effective copy number of Mhc. The presence of four copies of Mhc results in overabundance of the protein and a flightless phenotype. Electron microscopy reveals concomitant defects in the indirect flight muscles, with excess thick filaments at the periphery of the myofibrils. Further increases in copy number are lethal. These results demonstrate the usefulness and potential of the transgenic system to study myosin function in Drosophila. They also show that overexpression of wild-type protein in muscle may disrupt the function of not only the indirect flight but also other muscles of the organism.

Genetics ◽  
2003 ◽  
Vol 164 (1) ◽  
pp. 209-222 ◽  
Author(s):  
Upendra Nongthomba ◽  
Mark Cummins ◽  
Samantha Clark ◽  
Jim O Vigoreaux ◽  
John C Sparrow

Abstract The indirect flight muscles (IFM) of Drosophila melanogaster provide a good genetic system with which to investigate muscle function. Flight muscle contraction is regulated by both stretch and Ca2+-induced thin filament (actin + tropomyosin + troponin complex) activation. Some mutants in troponin-I (TnI) and troponin-T (TnT) genes cause a “hypercontraction” muscle phenotype, suggesting that this condition arises from defects in Ca2+ regulation and actomyosin-generated tension. We have tested the hypothesis that missense mutations of the myosin heavy chain gene, Mhc, which suppress the hypercontraction of the TnI mutant held-up2 (hdp2), do so by reducing actomyosin force production. Here we show that a “headless” Mhc transgenic fly construct that reduces the myosin head concentration in the muscle thick filaments acts as a dose-dependent suppressor of hypercontracting alleles of TnI, TnT, Mhc, and flightin genes. The data suggest that most, if not all, mutants causing hypercontraction require actomyosin-produced forces to do so. Whether all Mhc suppressors act simply by reducing the force production of the thick filament is discussed with respect to current models of myosin function and thin filament activation by the binding of calcium to the troponin complex.


2007 ◽  
Vol 7 (4) ◽  
pp. 413-422 ◽  
Author(s):  
Norbert K. Hess ◽  
Phillip A. Singer ◽  
Kien Trinh ◽  
Massoud Nikkhoy ◽  
Sanford I. Bernstein

1991 ◽  
Vol 266 (36) ◽  
pp. 24613-24620
Author(s):  
A. Subramaniam ◽  
W.K. Jones ◽  
J. Gulick ◽  
S. Wert ◽  
J. Neumann ◽  
...  

2005 ◽  
Vol 83 (10) ◽  
pp. 837-837 ◽  
Author(s):  
Andreas Perrot ◽  
Hajo Schmidt-Traub ◽  
Bernard Hoffmann ◽  
Matthias Prager ◽  
Nana Bit-Avragim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document