scholarly journals Tropomodulin caps the pointed ends of actin filaments.

1994 ◽  
Vol 127 (6) ◽  
pp. 1627-1635 ◽  
Author(s):  
A Weber ◽  
C R Pennise ◽  
G G Babcock ◽  
V M Fowler

Many proteins have been shown to cap the fast growing (barbed) ends of actin filaments, but none have been shown to block elongation and depolymerization at the slow growing (pointed) filament ends. Tropomodulin is a tropomyosin-binding protein originally isolated from red blood cells that has been localized by immunofluorescence staining to a site at or near the pointed ends of skeletal muscle thin filaments (Fowler, V. M., M. A., Sussman, P. G. Miller, B. E. Flucher, and M. P. Daniels. 1993. J. Cell Biol. 120: 411-420). Our experiments demonstrate that tropomodulin in conjunction with tropomyosin is a pointed end capping protein: it completely blocks both elongation and depolymerization at the pointed ends of tropomyosin-containing actin filaments in concentrations stoichiometric to the concentration of filament ends (Kd < or = 1 nM). In the absence of tropomyosin, tropomodulin acts as a "leaky" cap, partially inhibiting elongation and depolymerization at the pointed filament ends (Kd for inhibition of elongation = 0.1-0.4 microM). Thus, tropomodulin can bind directly to actin at the pointed filament end. Tropomodulin also doubles the critical concentration at the pointed ends of pure actin filaments without affecting either the rate of extent of polymerization at the barbed filament ends, indicating that tropomodulin does not sequester actin monomers. Our experiments provide direct biochemical evidence that tropomodulin binds to both the terminal tropomyosin and actin molecules at the pointed filament end, and is the long sought-after pointed end capping protein. We propose that tropomodulin plays a role in maintaining the narrow length distributions of the stable, tropomyosin-containing actin filaments in striated muscle and in red blood cells.

Gene ◽  
2000 ◽  
Vol 256 (1-2) ◽  
pp. 271-281 ◽  
Author(s):  
Xin Chu ◽  
Douglas Thompson ◽  
Leland J. Yee ◽  
Lanping Amy Sung

2001 ◽  
Vol 155 (6) ◽  
pp. 1043-1054 ◽  
Author(s):  
Michelle Mardahl-Dumesnil ◽  
Velia M. Fowler

Tropomodulin (Tmod) is an actin pointed-end capping protein that regulates actin dynamics at thin filament pointed ends in striated muscle. Although pointed-end capping by Tmod controls thin filament lengths in assembled myofibrils, its role in length specification during de novo myofibril assembly is not established. We used the Drosophila Tmod homologue, sanpodo (spdo), to investigate Tmod's function during muscle development in the indirect flight muscle. SPDO was associated with the pointed ends of elongating thin filaments throughout myofibril assembly. Transient overexpression of SPDO during myofibril assembly irreversibly arrested elongation of preexisting thin filaments. However, the lengths of thin filaments assembled after SPDO levels had declined were normal. Flies with a preponderance of abnormally short thin filaments were unable to fly. We conclude that: (a) thin filaments elongate from their pointed ends during myofibril assembly; (b) pointed ends are dynamically capped at endogenous levels of SPDO so as to allow elongation; (c) a transient increase in SPDO levels during myofibril assembly converts SPDO from a dynamic to a permanent cap; and (d) developmental regulation of pointed-end capping during myofibril assembly is crucial for specification of final thin filament lengths, myofibril structure, and muscle function.


1999 ◽  
Vol 112 (8) ◽  
pp. 1111-1123 ◽  
Author(s):  
A. Almenar-Queralt ◽  
C.C. Gregorio ◽  
V.M. Fowler

Actin filament lengths in muscle and nonmuscle cells are believed to depend on the regulated activity of capping proteins at both the fast growing (barbed) and slow growing (pointed) filament ends. In striated muscle, the pointed end capping protein, tropomodulin, has been shown to maintain the lengths of thin filaments in mature myofibrils. To determine whether tropomodulin might also be involved in thin filament assembly, we investigated the assembly of tropomodulin into myofibrils during differentiation of primary cultures of chick skeletal muscle cells. Our results show that tropomodulin is expressed early in differentiation and is associated with the earliest premyofibrils which contain overlapping and misaligned actin filaments. In addition, tropomodulin can be found in actin filament bundles at the distal tips of growing myotubes, where sarcomeric alpha-actinin is not always detected, suggesting that tropomodulin caps actin filament pointed ends even before the filaments are cross-linked into Z bodies by alpha-actinin. Tropomodulin staining exhibits an irregular punctate pattern along the length of premyofibrils that demonstrate a smooth phalloidin staining pattern for F-actin. Strikingly, the tropomodulin dots often appear to be located between the closely spaced, dot-like Z bodies that are stained for (α)-actinin. Thus, in the earliest premyofibrils, the pointed ends of the thin filaments are clustered and partially aligned with respect to the Z bodies (the location of the barbed filament ends). At later stages of differentiation, the tropomodulin dots become aligned into regular periodic striations concurrently with the appearance of striated phalloidin staining for F-actin and alignment of Z bodies into Z lines. Tropomodulin, together with the barbed end capping protein, CapZ, may function from the earliest stages of myofibrillogenesis to restrict the lengths of newly assembled thin filaments by capping their ends; thus, transitions from nonstriated to striated myofibrils in skeletal muscle are likely due principally to filament rearrangements rather than to filament polymerization or depolymerization. Rearrangements of actin filaments capped at their pointed and barbed ends may be a general mechanism by which cells restructure their actin cytoskeletal networks during cell growth and differentiation.


2010 ◽  
Vol 21 (19) ◽  
pp. 3352-3361 ◽  
Author(s):  
Aneta Skwarek-Maruszewska ◽  
Malgorzata Boczkowska ◽  
Allison L. Zajac ◽  
Elena Kremneva ◽  
Tatyana Svitkina ◽  
...  

Leiomodin (Lmod) is a muscle-specific F-actin–nucleating protein that is related to the F-actin pointed-end–capping protein tropomodulin (Tmod). However, Lmod contains a unique ∼150-residue C-terminal extension that is required for its strong nucleating activity. Overexpression or depletion of Lmod compromises sarcomere organization, but the mechanism by which Lmod contributes to myofibril assembly is not well understood. We show that Tmod and Lmod localize through fundamentally different mechanisms to the pointed ends of two distinct subsets of actin filaments in myofibrils. Tmod localizes to two narrow bands immediately adjacent to M-lines, whereas Lmod displays dynamic localization to two broader bands, which are generally more separated from M-lines. Lmod's localization and F-actin nucleation activity are enhanced by interaction with tropomyosin. Unlike Tmod, the myofibril localization of Lmod depends on sustained muscle contraction and actin polymerization. We further show that Lmod expression correlates with the maturation of myofibrils in cultured cardiomyocytes and that it associates with sarcomeres only in differentiated myofibrils. Collectively, the data suggest that Lmod contributes to the final organization and maintenance of sarcomere architecture by promoting tropomyosin-dependent actin filament nucleation.


1991 ◽  
Vol 114 (3) ◽  
pp. 503-513 ◽  
Author(s):  
M H Symons ◽  
T J Mitchison

We have investigated the spatial control of actin polymerization in fibroblasts using rhodamine-labeled muscle actin in; (a) microinjection experiments to follow actin dynamics in intact cells, and (b) incubation with permeabilized cells to study incorporation sites. Rhodamine-actin was microinjected into NIH-3T3 cells which were then fixed and stained with fluorescein-phalloidin to visualize total actin filaments. The incorporation of newly polymerized actin was assayed using rhodamine/fluorescein ratio-imaging. The results indicated initial incorporation of the injected actin near the tip and subsequent transport towards the base of lamellipodia at rates greater than 4.5 microns/min. Furthermore, both fluorescein- and rhodamine-intensity profiles across lamellipodia revealed a decreasing density of actin filaments from tip to base. From this observation and the presence of centripetal flux of polymerized actin we infer that the actin cytoskeleton partially disassembles before it reaches the base of the lamellipodium. In permeabilized cells we found that, in agreement with the injection studies, rhodamine-actin incorporated predominantly in a narrow strip of less than 1-microns wide, located at the tip of lamellipodia. The critical concentration for the rhodamine-actin incorporation (0.15 microM) and its inhibition by CapZ, a barbed-end capping protein, indicated that the nucleation sites for actin polymerization most likely consist of free barbed ends of actin filaments. Because any potential monomer-sequestering system is bypassed by addition of exogenous rhodamine-actin to the permeabilized cells, these observations indicate that the localization of actin incorporation in intact cells is determined, at least in part, by the presence of specific elongation and/or nucleation sites at the tips of lamellipodia and not solely by localized desequestration of subunits. We propose that the availability of the incorporation sites at the tips of lamellipodia is because of capping activities which preferentially inhibit barbed-end incorporation elsewhere in the cell, but leave barbed ends at the tips of lamellipodia free to add subunits.


1987 ◽  
Vol 252 (5) ◽  
pp. H1031-H1040 ◽  
Author(s):  
M. L. Ellsworth ◽  
R. N. Pittman ◽  
C. G. Ellis

We present a computer-aided videodensitometric method for the determination of oxygen saturation in red blood cells flowing through capillaries of the hamster cheek pouch retractor muscle. The optical density (OD) of red blood cells is determined at two wavelengths. At the first, 431 nm, there is a maximum difference between absorption by oxygen deoxyhemoglobin. At the second, 420 nm, absorption is equal for the two absorbing species (isosbestic wavelength). In capillaries of the retractor muscle a relationship between oxygen saturation (S) and the following OD ratio was obtained as S = -1.71 (OD431/OD420) + 2.20. The error (95% confidence interval) in oxygen saturation associated with a determination of the OD ratio is estimated to be +/- 4.8%. The computerization of the method employs a frame-by-frame analysis of the light intensity over a selected capillary segment. The light intensity waveform along the segment is digitized and the minimum (I) and maximum (I0) light intensities are used to compute an optical density (OD = log10 [I0/I]). These minimum and maximum intensities correspond to the presence and absence of a red blood cell, respectively. The method permits the off-line analysis of videotaped scenes and provides a means of assessing the extent of temporal and spatial heterogeneity of oxygen saturation in selected capillary networks. The method has been developed for use in capillaries in transilluminated striated muscle but should be generally applicable to the measurement of capillary oxygen saturation in other tissues.


1990 ◽  
Vol 258 (4) ◽  
pp. H1216-H1223 ◽  
Author(s):  
C. G. Ellis ◽  
M. L. Ellsworth ◽  
R. N. Pittman

We have developed a new video microspectrophotometric system for the in vivo determination of oxygen saturation in red blood cells in striated muscle capillaries. This method allows one to quantify changes in the oxygenation of small groups of red blood cells as they traverse the capillary. Simultaneous images of a single microscopic field are recorded using two silicon-intensified target cameras and high-resolution video recorders. One image is recorded at an oxygen-dependent wave-length (431 nm) and the other at an isosbestic wavelength (420 nm). Light intensities from 10 adjacent pixels aligned along the axis of the capillary from identical 10-s segments of the video-tapes are digitized once per frame. Both sets of data are redisplayed simultaneously as two-dimensional images (10 pixels high x 300 frames wide) using a graphics system. These images show alternating bright and dark bands corresponding to plasma gaps and red blood cells. Light intensities in the presence and absence of red blood cells are determined by positioning a window over the appropriate region of the graphics image. Optical densities of single red blood cells at the two wavelengths, OD431 and OD420, are computed as is their ratio (OD431/OD420), which is linearly related to oxygen saturation. In vivo calibration studies in capillaries of the hamster retractor muscle indicate that the error in measuring oxygen saturation with this technique is approximately 2.7% saturation for a group of 10 cells.


2000 ◽  
Vol 349 (1) ◽  
pp. 105-111 ◽  
Author(s):  
Philip A. KUHLMAN

The narrow Gaussian-length-distribution of actin filaments forming the cytoskeleton of the human erythrocyte indicates the existence of strict mechanisms for length determination and maintenance. A similar regulation is achieved in striated muscle by the capping of both the ends of the thin filaments, which consequently prevents monomer exchange. However, the ability of erythroid cytoskeletal preparations to nucleate actin polymerization has led to the proliferation of the idea that at least the barbed ends of the actin filaments are uncapped. The mechanism by which the length of the filaments is thus maintained has been left open to debate. In an effort to resolve any doubt regarding length-maintenance in human erythrocytes we have characterized the capping state of the actin filaments in a number of different ghost and cytoskeletal preparations. Under conditions of sufficiently high bivalent-cation concentration the actin filaments retain functional caps at both the barbed and pointed ends. Hence filament capping at both ends prevents redistribution of the actin monomer in a similar manner to that proposed for the thin filaments of striated muscle. Actin filament uncapping is apparently caused by the centrifugal shearing stress imposed during ghost preparation. The uncapping is more pronounced when the bivalent-cation concentration is reduced or when the membrane is removed by detergents. The effects of bivalent cations seem to be mediated through the erythroid protein spectrin, consistent with the hypothesis of Wallis et al. [Wallis, Babitch and Wenegieme (1993) Biochemistry 32, 5045-5050] that the ability of spectrin to resist shearing stress is dependent on the degree of bound bivalent cations.


1980 ◽  
Vol 58 (3) ◽  
pp. 271-274 ◽  
Author(s):  
Lionel S. Sewchand ◽  
Dieter Bruckschwaiger

The effectiveness of dextran fractions (Dx-500, Dx-100, Dx-70) and polyvinylpyrrolidone (PVP-360, PVP-40) in inducing aggregation of red blood cells (RBC) was studied in a nonflowing environment. The Dx fractions, at low concentrations, induced aggregation of human RBC but failed to do so at high concentrations (concentrations greater than 70 g/L). The effect was different on RBC from animal species (cat and rabbit); aggregation increased steadily with the Dx concentration and there was no critical concentration beyond which Dx failed to induce aggregation. The PVP was found to be very effective, at all concentrations, in inducing aggregation of RBC from both human and the animal species. These results have a twofold significance: (1) they suggest that Dx and PVP, both neutral polymers, interact differently with the human RBC membrane; and (2) the association of Dx with the human RBC membrane is different from that with cat and rabbit RBC membranes.


1984 ◽  
Vol 98 (3) ◽  
pp. 825-833 ◽  
Author(s):  
J W Sanger ◽  
B Mittal ◽  
J M Sanger

To study how contractile proteins become organized into sarcomeric units in striated muscle, we have exposed glycerinated myofibrils to fluorescently labeled actin, alpha-actinin, and tropomyosin. In this in vitro system, alpha-actinin bound to the Z-bands and the binding could not be saturated by prior addition of excess unlabeled alpha-actinin. Conditions known to prevent self-association of alpha-actinin, however, blocked the binding of fluorescently labeled alpha-actinin to Z-bands. When tropomyosin was removed from the myofibrils, alpha-actinin then added to the thin filaments as well as the Z-bands. Actin bound in a doublet pattern to the regions of the myosin filaments where there were free cross-bridges i.e., in that part of the A-band free of interdigitating native thin filaments but not in the center of the A-band which lacks cross-bridges. In the presence of 0.1-0.2 mM ATP, no actin binding occurred. When unlabeled alpha-actinin was added first to myofibrils and then labeled actin was added fluorescence occurred not in a doublet pattern but along the entire length of the myofibril. Tropomyosin did not bind to myofibrils unless the existing tropomyosin was first removed, in which case it added to the thin filaments in the l-band. Tropomyosin did bind, however, to the exogenously added tropomyosin-free actin that localizes as a doublet in the A-band. These results indicate that the alpha-actinin present in Z-bands of myofibrils is fully complexed with actin, but can bind exogenous alpha-actinin and, if actin is added subsequently, the exogenous alpha-actinin in the Z-band will bind the newly formed fluorescent actin filaments. Myofibrillar actin filaments did not increase in length when G-actin was present under polymerizing conditions, nor did they bind any added tropomyosin. These observations are discussed in terms of the structure and in vivo assembly of myofibrils.


Sign in / Sign up

Export Citation Format

Share Document