Characterization of the actin filament capping state in human erythrocyte ghost and cytoskeletal preparations

2000 ◽  
Vol 349 (1) ◽  
pp. 105-111 ◽  
Author(s):  
Philip A. KUHLMAN

The narrow Gaussian-length-distribution of actin filaments forming the cytoskeleton of the human erythrocyte indicates the existence of strict mechanisms for length determination and maintenance. A similar regulation is achieved in striated muscle by the capping of both the ends of the thin filaments, which consequently prevents monomer exchange. However, the ability of erythroid cytoskeletal preparations to nucleate actin polymerization has led to the proliferation of the idea that at least the barbed ends of the actin filaments are uncapped. The mechanism by which the length of the filaments is thus maintained has been left open to debate. In an effort to resolve any doubt regarding length-maintenance in human erythrocytes we have characterized the capping state of the actin filaments in a number of different ghost and cytoskeletal preparations. Under conditions of sufficiently high bivalent-cation concentration the actin filaments retain functional caps at both the barbed and pointed ends. Hence filament capping at both ends prevents redistribution of the actin monomer in a similar manner to that proposed for the thin filaments of striated muscle. Actin filament uncapping is apparently caused by the centrifugal shearing stress imposed during ghost preparation. The uncapping is more pronounced when the bivalent-cation concentration is reduced or when the membrane is removed by detergents. The effects of bivalent cations seem to be mediated through the erythroid protein spectrin, consistent with the hypothesis of Wallis et al. [Wallis, Babitch and Wenegieme (1993) Biochemistry 32, 5045-5050] that the ability of spectrin to resist shearing stress is dependent on the degree of bound bivalent cations.

2011 ◽  
Vol 2011 ◽  
pp. 1-16 ◽  
Author(s):  
David S. Gokhin ◽  
Velia M. Fowler

Efficient striated muscle contraction requires precise assembly and regulation of diverse actin filament systems, most notably the sarcomeric thin filaments of the contractile apparatus. By capping the pointed ends of actin filaments, tropomodulins (Tmods) regulate actin filament assembly, lengths, and stability. Here, we explore the current understanding of the expression patterns, localizations, and functions of Tmods in both cardiac and skeletal muscle. We first describe the mechanisms by which Tmods regulate myofibril assembly and thin filament lengths, as well as the roles of closely related Tmod family variants, the leiomodins (Lmods), in these processes. We also discuss emerging functions for Tmods in the sarcoplasmic reticulum. This paper provides abundant evidence that Tmods are key structural regulators of striated muscle cytoarchitecture and physiology.


2002 ◽  
Vol 156 (6) ◽  
pp. 1065-1076 ◽  
Author(s):  
Shoichiro Ono ◽  
Kanako Ono

Tropomyosin binds to actin filaments and is implicated in stabilization of actin cytoskeleton. We examined biochemical and cell biological properties of Caenorhabditis elegans tropomyosin (CeTM) and obtained evidence that CeTM is antagonistic to ADF/cofilin-dependent actin filament dynamics. We purified CeTM, actin, and UNC-60B (a muscle-specific ADF/cofilin isoform), all of which are derived from C. elegans, and showed that CeTM and UNC-60B bound to F-actin in a mutually exclusive manner. CeTM inhibited UNC-60B–induced actin depolymerization and enhancement of actin polymerization. Within isolated native thin filaments, actin and CeTM were detected as major components, whereas UNC-60B was present at a trace amount. Purified UNC-60B was unable to interact with the native thin filaments unless CeTM and other associated proteins were removed by high-salt extraction. Purified CeTM was sufficient to restore the resistance of the salt-extracted filaments from UNC-60B. In muscle cells, CeTM and UNC-60B were localized in different patterns. Suppression of CeTM by RNA interference resulted in disorganized actin filaments and paralyzed worms in wild-type background. However, in an ADF/cofilin mutant background, suppression of CeTM did not worsen actin organization and worm motility. These results suggest that tropomyosin is a physiological inhibitor of ADF/cofilin-dependent actin dynamics.


1994 ◽  
Vol 127 (6) ◽  
pp. 1627-1635 ◽  
Author(s):  
A Weber ◽  
C R Pennise ◽  
G G Babcock ◽  
V M Fowler

Many proteins have been shown to cap the fast growing (barbed) ends of actin filaments, but none have been shown to block elongation and depolymerization at the slow growing (pointed) filament ends. Tropomodulin is a tropomyosin-binding protein originally isolated from red blood cells that has been localized by immunofluorescence staining to a site at or near the pointed ends of skeletal muscle thin filaments (Fowler, V. M., M. A., Sussman, P. G. Miller, B. E. Flucher, and M. P. Daniels. 1993. J. Cell Biol. 120: 411-420). Our experiments demonstrate that tropomodulin in conjunction with tropomyosin is a pointed end capping protein: it completely blocks both elongation and depolymerization at the pointed ends of tropomyosin-containing actin filaments in concentrations stoichiometric to the concentration of filament ends (Kd < or = 1 nM). In the absence of tropomyosin, tropomodulin acts as a "leaky" cap, partially inhibiting elongation and depolymerization at the pointed filament ends (Kd for inhibition of elongation = 0.1-0.4 microM). Thus, tropomodulin can bind directly to actin at the pointed filament end. Tropomodulin also doubles the critical concentration at the pointed ends of pure actin filaments without affecting either the rate of extent of polymerization at the barbed filament ends, indicating that tropomodulin does not sequester actin monomers. Our experiments provide direct biochemical evidence that tropomodulin binds to both the terminal tropomyosin and actin molecules at the pointed filament end, and is the long sought-after pointed end capping protein. We propose that tropomodulin plays a role in maintaining the narrow length distributions of the stable, tropomyosin-containing actin filaments in striated muscle and in red blood cells.


1984 ◽  
Vol 98 (3) ◽  
pp. 825-833 ◽  
Author(s):  
J W Sanger ◽  
B Mittal ◽  
J M Sanger

To study how contractile proteins become organized into sarcomeric units in striated muscle, we have exposed glycerinated myofibrils to fluorescently labeled actin, alpha-actinin, and tropomyosin. In this in vitro system, alpha-actinin bound to the Z-bands and the binding could not be saturated by prior addition of excess unlabeled alpha-actinin. Conditions known to prevent self-association of alpha-actinin, however, blocked the binding of fluorescently labeled alpha-actinin to Z-bands. When tropomyosin was removed from the myofibrils, alpha-actinin then added to the thin filaments as well as the Z-bands. Actin bound in a doublet pattern to the regions of the myosin filaments where there were free cross-bridges i.e., in that part of the A-band free of interdigitating native thin filaments but not in the center of the A-band which lacks cross-bridges. In the presence of 0.1-0.2 mM ATP, no actin binding occurred. When unlabeled alpha-actinin was added first to myofibrils and then labeled actin was added fluorescence occurred not in a doublet pattern but along the entire length of the myofibril. Tropomyosin did not bind to myofibrils unless the existing tropomyosin was first removed, in which case it added to the thin filaments in the l-band. Tropomyosin did bind, however, to the exogenously added tropomyosin-free actin that localizes as a doublet in the A-band. These results indicate that the alpha-actinin present in Z-bands of myofibrils is fully complexed with actin, but can bind exogenous alpha-actinin and, if actin is added subsequently, the exogenous alpha-actinin in the Z-band will bind the newly formed fluorescent actin filaments. Myofibrillar actin filaments did not increase in length when G-actin was present under polymerizing conditions, nor did they bind any added tropomyosin. These observations are discussed in terms of the structure and in vivo assembly of myofibrils.


2021 ◽  
Author(s):  
Deb Sankar Banerjee ◽  
Shiladitya Banerjee

Actin is one of the key structural components of the eukaryotic cytoskeleton that regulates cellular architecture and mechanical properties. Dynamic regulation of actin filament length and organization is essential for the control of many physiological processes including cell adhesion, motility and division. While previous studies have mostly focused on the mechanisms controlling the mean length of individual actin filaments, it remains poorly understood how distinct actin filament populations in cells maintain different size using the same set of molecular building blocks. Here we develop a theoretical model for the length regulation of multiple actin filaments by nucleation and growth rate modulation by actin binding proteins in a limiting pool of monomers. We first show that spontaneous nucleation of actin filaments naturally leads to heterogeneities in filament length distribution. We then investigate the effects of filament growth inhibition by capping proteins and growth promotion by formin proteins on filament length distribution. We find that filament length heterogeneity can be increased by growth inhibition, whereas growth promoters do not significantly affect length heterogeneities. Interestingly, a competition between filament growth inhibitors and growth promoters can give rise to bimodal filament length distribution as well as a highly heterogeneous length distribution with large statistical dispersion. We quantitatively predict how heterogeneity in actin filament length can be modulated by tuning F-actin nucleation and growth rates in order to create distinct filament subpopulations with different lengths.


1967 ◽  
Vol 50 (6) ◽  
pp. 119-133 ◽  
Author(s):  
Teru Hayashi

The molecular basis for the mechanism of contraction in striated muscle, with primary emphasis on the interaction between the thick and thin filaments and the role of the thin (actin) filaments, is the theme presented. Recent information relating to actin-myosin interaction points up the fact that definitive statements cannot be made regarding the molecular interaction(s) that lead to contraction. Nevertheless, the properties of actin indicate that (a) actin in the monomeric state has properties differing markedly from actin in the polymer (filament) state; (b) these property differences may be significant in the contractile process, for they include changes in the reactivity of the bound nucleotide and actin-myosin complex formation; (c) the bound nucleotide seems to be required in the contraction process. For these, and other, reasons discussed, the tentative hypothesis is advanced that the contraction reaction involves local changes in the actin filament providing local monomer or monomer-like actin units in the reaction with myosin.


1995 ◽  
Vol 129 (3) ◽  
pp. 683-695 ◽  
Author(s):  
C C Gregorio ◽  
V M Fowler

Tropomodulin is a pointed end capping protein for tropomyosin-coated actin filaments that is hypothesized to play a role in regulating the precise lengths of striated muscle thin filaments (Fowler, V. M., M. A. Sussman, P. G. Miller, B. E. Flucher, and M. P. Daniels. 1993. J. Cell Biol. 120:411-420; Weber, A., C. C. Pennise, G. G. Babcock, and V. M. Fowler. 1994, J. Cell Biol. 127:1627-1635). To gain insight into the mechanisms of thin filament assembly and the role of tropomodulin therein, we have characterized the temporal appearance, biosynthesis and mechanisms of assembly of tropomodulin onto the pointed ends of thin filaments during the formation of striated myofibrils in primary embryonic chick cardiomyocyte cultures. Our results demonstrate that tropomodulin is not assembled coordinately with other thin filament proteins. Double immunofluorescence staining and ultrastructural immunolocalization demonstrate that tropomodulin is incorporated in its characteristic sarcomeric location at the pointed ends of the thin filaments after the thin filaments have become organized into periodic I bands. In fact, tropomodulin assembles later than all other well characterized myofibrillar proteins studied including: actin, tropomyosin, alpha-actinin, titin, myosin and C-protein. Nevertheless, at steady state, a significant proportion (approximately 39%) of tropomodulin is present in a soluble pool throughout myofibril assembly. Thus, the absence of tropomodulin in some striated myofibrils is not due to limiting quantities of the protein. In addition, kinetic data obtained from [35S]methionine pulse-chase experiments indicate that tropomodulin assembles more slowly into myofibrils than does tropomyosin. This observation, together with results obtained using a novel permeabilized cell model for thin filament assembly, indicate that tropomodulin assembly is dependent on the prior association of tropomyosin with actin filaments. We conclude that tropomodulin is a late marker for the assembly of striated myofibrils in cardiomyocytes; its assembly appears to be linked to their maturity. We propose that tropomodulin is involved in maintaining and stabilizing the final lengths of thin filaments after they are assembled.


1999 ◽  
Vol 112 (8) ◽  
pp. 1111-1123 ◽  
Author(s):  
A. Almenar-Queralt ◽  
C.C. Gregorio ◽  
V.M. Fowler

Actin filament lengths in muscle and nonmuscle cells are believed to depend on the regulated activity of capping proteins at both the fast growing (barbed) and slow growing (pointed) filament ends. In striated muscle, the pointed end capping protein, tropomodulin, has been shown to maintain the lengths of thin filaments in mature myofibrils. To determine whether tropomodulin might also be involved in thin filament assembly, we investigated the assembly of tropomodulin into myofibrils during differentiation of primary cultures of chick skeletal muscle cells. Our results show that tropomodulin is expressed early in differentiation and is associated with the earliest premyofibrils which contain overlapping and misaligned actin filaments. In addition, tropomodulin can be found in actin filament bundles at the distal tips of growing myotubes, where sarcomeric alpha-actinin is not always detected, suggesting that tropomodulin caps actin filament pointed ends even before the filaments are cross-linked into Z bodies by alpha-actinin. Tropomodulin staining exhibits an irregular punctate pattern along the length of premyofibrils that demonstrate a smooth phalloidin staining pattern for F-actin. Strikingly, the tropomodulin dots often appear to be located between the closely spaced, dot-like Z bodies that are stained for (α)-actinin. Thus, in the earliest premyofibrils, the pointed ends of the thin filaments are clustered and partially aligned with respect to the Z bodies (the location of the barbed filament ends). At later stages of differentiation, the tropomodulin dots become aligned into regular periodic striations concurrently with the appearance of striated phalloidin staining for F-actin and alignment of Z bodies into Z lines. Tropomodulin, together with the barbed end capping protein, CapZ, may function from the earliest stages of myofibrillogenesis to restrict the lengths of newly assembled thin filaments by capping their ends; thus, transitions from nonstriated to striated myofibrils in skeletal muscle are likely due principally to filament rearrangements rather than to filament polymerization or depolymerization. Rearrangements of actin filaments capped at their pointed and barbed ends may be a general mechanism by which cells restructure their actin cytoskeletal networks during cell growth and differentiation.


1995 ◽  
Vol 129 (5) ◽  
pp. 1275-1286 ◽  
Author(s):  
J V Small ◽  
M Herzog ◽  
K Anderson

From recent studies of locomoting fish keratocytes it was proposed that the dynamic turnover of actin filaments takes place by a nucleation-release mechanism, which predicts the existence of short (less than 0.5 microns) filaments throughout the lamellipodium (Theriot, J. A., and T. J. Mitchison. 1991. Nature (Lond.). 352:126-131). We have tested this model by investigating the structure of whole mount keratocyte cytoskeletons in the electron microscope and phalloidin-labeled cells, after various fixations, in the light microscope. Micrographs of negatively stained keratocyte cytoskeletons produced by Triton extraction showed that the actin filaments of the lamellipodium are organized to a first approximation in a two-dimensional orthogonal network with the filaments subtending an angle of around 45 degrees to the cell front. Actin filament fringes grown onto the front edge of keratocyte cytoskeletons by the addition of exogenous actin showed a uniform polarity when decorated with myosin subfragment-1, consistent with the fast growing ends of the actin filaments abutting the anterior edge. A steady drop in filament density was observed from the mid-region of the lamellipodium to the perinuclear zone and in images of the more posterior regions of lower filament density many of the actin filaments could be seen to be at least several microns in length. Quantitative analysis of the intensity distribution of fluorescent phalloidin staining across the lamellipodium revealed that the gradient of filament density as well as the absolute content of F-actin was dependent on the fixation method. In cells first fixed and then extracted with Triton, a steep gradient of phalloidin staining was observed from the front to the rear of the lamellipodium. With the protocol required to obtain the electron microscope images, namely Triton extraction followed by fixation, phalloidin staining was, significantly and preferentially reduced in the anterior part of the lamellipodium. This resulted in a lower gradient of filament density, consistent with that seen in the electron microscope, and indicated a loss of around 45% of the filamentous actin during Triton extraction. We conclude, first that the filament organization and length distribution does not support a nucleation release model, but is more consistent with a treadmilling-type mechanism of locomotion featuring actin filaments of graded length. Second, we suggest that two layers of filaments make up the lamellipodium; a lower, stabilized layer associated with the ventral membrane and an upper layer associated with the dorsal membrane that is composed of filaments of a shorter range of lengths than the lower layer and which is mainly lost in Triton.


2010 ◽  
Vol 191 (6) ◽  
pp. 1159-1172 ◽  
Author(s):  
Thomas Iskratsch ◽  
Stephan Lange ◽  
Joseph Dwyer ◽  
Ay Lin Kho ◽  
Cris dos Remedios ◽  
...  

Members of the formin family are important for actin filament nucleation and elongation. We have identified a novel striated muscle–specific splice variant of the formin FHOD3 that introduces a casein kinase 2 (CK2) phosphorylation site. The specific targeting of muscle FHOD3 to the myofibrils in cardiomyocytes is abolished in phosphomutants or by the inhibition of CK2. Phosphorylation of muscle FHOD3 also prevents its interaction with p62/sequestosome 1 and its recruitment to autophagosomes. Furthermore, we show that muscle FHOD3 efficiently promotes the polymerization of actin filaments in cardiomyocytes and that the down-regulation of its expression severely affects myofibril integrity. In murine and human cardiomyopathy, we observe reduced FHOD3 expression with a concomitant isoform switch and change of subcellular targeting. Collectively, our data suggest that a muscle-specific isoform of FHOD3 is required for the maintenance of the contractile structures in heart muscle and that its function is regulated by posttranslational modification.


Sign in / Sign up

Export Citation Format

Share Document