scholarly journals Polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions.

1996 ◽  
Vol 135 (2) ◽  
pp. 497-510 ◽  
Author(s):  
A Del Maschio ◽  
A Zanetti ◽  
M Corada ◽  
Y Rival ◽  
L Ruco ◽  
...  

Polymorphonuclear leukocytes (PMN) infiltration into tissues is frequently accompanied by increase in vascular permeability. This suggests that PMN adhesion and transmigration could trigger modifications in the architecture of endothelial cell-to-cell junctions. In the present paper, using indirect immunofluorescence, we found that PMN adhesion to tumor necrosis factor-activated endothelial cells (EC) induced the disappearance from endothelial cell-to-cell contacts of adherens junction (AJ) components: vascular endothelial (VE)-cadherin, alpha-catenin, beta-catenin, and plakoglobin. Immunoprecipitation and Western blot analysis of the VE-cadherin/catenin complex showed that the amount of beta-catenin and plakoglobin was markedly reduced from the complex and from total cell extracts. In contrast, VE-cadherin and alpha-catenin were only partially affected. Disorganization of endothelial AJ by PMN was not accompanied by EC retraction or injury and was specific for VE-cadherin/catenin complex, since platelet/endothelial cell adhesion molecule 1 (PECAM-1) distribution at cellular contacts was unchanged. PMN adhesion to EC seems to be a prerequisite for VE-cadherin/catenin complex disorganization. This phenomenon could be fully inhibited by blocking PMN adhesion with an anti-integrin beta 2 mAb, while it could be reproduced by any condition that induced increase of PMN adhesion, such as addition of PMA or an anti-beta 2-activating mAb. The effect on endothelial AJ was specific for PMN since adherent activated lymphocytes did not induce similar changes. High concentrations of protease inhibitors and oxygen metabolite scavengers were unable to prevent AJ disorganization mediated by PMN. PMN adhesion to EC was accompanied by increase in EC permeability in vitro. This effect was dependent on PMN adhesion, was not mediated by proteases and oxygen-reactive metabolites, and could be reproduced by EC treatment with EGTA. Finally, immunohistochemical analysis showed that VE-cadherin distribution was affected by PMN adhesion to the vessel wall in vivo too. This work suggests that PMN adhesion could trigger intracellular signals in EC that possibly regulate VE-cadherin /catenin complex disorganization. This effect could increase EC permeability and facilitate PMN transmigration during the acute inflammatory reaction.

1999 ◽  
Vol 112 (18) ◽  
pp. 3005-3014 ◽  
Author(s):  
N. Ilan ◽  
S. Mahooti ◽  
D.L. Rimm ◽  
J.A. Madri

Catenins function as regulators of cellular signaling events in addition to their previously documented roles in adherens junction formation and function. Evidence to date suggests that beta and gamma catenins can act as signaling molecules, bind transcriptional factors and translocate to the nucleus. Beta- and gamma-catenin are also major substrates for protein tyrosine kinases, and tyrosine phosphorylation of junctional proteins is correlated with decreased adhesiveness. One way in which catenin functions are modulated is by dynamic incorporation into junctional complexes which controls, in part, the cytoplasmic levels of catenins. Here we show that: (1) vascular endothelial growth factor (VEGF) induces beta-catenin tyrosine phosphorylation in a time-, and dose-dependent manner and that VEGF receptors co-localize to areas of endothelial cell-cell contact in vitro and in vivo. (2) Platelet-endothelial cell adhesion molecule (PECAM)-1 can function as a reservoir for, and modulator of, tyrosine phosphorylated beta-catenin. (3) PECAM-1 can prevent beta-catenin nuclear translocation in transfected SW480 colon carcinoma cells. We suggest that PECAM-1 may play a role in modulating beta-catenin tyrosine phosphorylation levels, localization and signaling and by doing so, functions as an important modulator of the endothelium.


2011 ◽  
Vol 22 (14) ◽  
pp. 2509-2519 ◽  
Author(s):  
Jian J. Liu ◽  
Rebecca A. Stockton ◽  
Alexandre R. Gingras ◽  
Ararat J. Ablooglu ◽  
Jaewon Han ◽  
...  

Activation of Rap1 small GTPases stabilizes cell–cell junctions, and this activity requires Krev Interaction Trapped gene 1 (KRIT1). Loss of KRIT1 disrupts cardiovascular development and causes autosomal dominant familial cerebral cavernous malformations. Here we report that native KRIT1 protein binds the effector loop of Rap1A but not H-Ras in a GTP-dependent manner, establishing that it is an authentic Rap1-specific effector. By modeling the KRIT1–Rap1 interface we designed a well-folded KRIT1 mutant that exhibited a ∼40-fold-reduced affinity for Rap1A and maintained other KRIT1-binding functions. Direct binding of KRIT1 to Rap1 stabilized endothelial cell–cell junctions in vitro and was required for cardiovascular development in vivo. Mechanistically, Rap1 binding released KRIT1 from microtubules, enabling it to locate to cell–cell junctions, where it suppressed Rho kinase signaling and stabilized the junctions. These studies establish that the direct physical interaction of Rap1 with KRIT1 enables the translocation of microtubule-sequestered KRIT1 to junctions, thereby supporting junctional integrity and cardiovascular development.


Blood ◽  
1995 ◽  
Vol 86 (7) ◽  
pp. 2760-2766 ◽  
Author(s):  
S Kanwar ◽  
RC Woodman ◽  
MC Poon ◽  
T Murohara ◽  
AM Lefer ◽  
...  

Abstract Desmopressin, (DDAVP; 1-desamino-8-D-arginine vasopressin) increases the release and activity of von Willebrand factor (vWF); however, its effects on the other major constituent of endothelial Weibel-Palade bodies, P-selectin, has not been investigated. DDAVP-induced P-selectin expression may explain DDAVP's efficacy in bleeding disorders in which vWF levels are normal. Therefore, the objective of this study is to assess the effect of DDAVP on P-selectin expression on endothelial cells of postcapillary venules in vivo and on human umbilical vein endothelium in vitro, and to determine whether DDAVP has direct effects on leukocyte behavior in postcapillary venules. DDAVP (0.1 and 1.0 microgram/mL) induced a significant but transient increase in P-selectin expression on human umbilical vein endothelial cells as well as on rat and human platelets. Immunohistochemical analysis of rat postcapillary venules showed that in contrast to saline, DDAVP injection (1 microgram/kg, intravenous) induced significant endothelial P-selectin expression. DDAVP administration also induced a rapid and significant increase in leukocyte rolling in rat mesenteric venules in vivo. This response was entirely dependent on P-selectin, as an anti-P-selectin antibody rapidly reversed the DDAVP-induced increase in leukocyte rolling. DDAVP induced leukocyte rolling in medium (20 to 40 microns) and large (> 40 microns), but not small (< 20 microns), postcapillary venules. In animals that were treated with DDAVP, there was a steady and significant increase in leukocyte adhesion. This study shows that DDAVP can directly induce P-selectin expression on endothelium in vitro and in vivo and that the latter response is capable of supporting prolonged leukocyte rolling in rat postcapillary venules.


2014 ◽  
Vol 25 (13) ◽  
pp. 2006-2016 ◽  
Author(s):  
Anna A. Birukova ◽  
Patrick A. Singleton ◽  
Grzegorz Gawlak ◽  
Xinyong Tian ◽  
Tamara Mirzapoiazova ◽  
...  

Vascular integrity and the maintenance of blood vessel continuity are fundamental features of the circulatory system maintained through endothelial cell–cell junctions. Defects in the endothelial barrier become an initiating factor in several pathologies, including ischemia/reperfusion, tumor angiogenesis, pulmonary edema, sepsis, and acute lung injury. Better understanding of mechanisms stimulating endothelial barrier enhancement may provide novel therapeutic strategies. We previously reported that oxidized phospholipids (oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine [OxPAPC]) promote endothelial cell (EC) barrier enhancement both in vitro and in vivo. This study examines the initiating mechanistic events triggered by OxPAPC to increase vascular integrity. Our data demonstrate that OxPAPC directly binds the cell membrane–localized chaperone protein, GRP78, associated with its cofactor, HTJ-1. OxPAPC binding to plasma membrane–localized GRP78 leads to GRP78 trafficking to caveolin-enriched microdomains (CEMs) on the cell surface and consequent activation of sphingosine 1-phosphate receptor 1, Src and Fyn tyrosine kinases, and Rac1 GTPase, processes essential for cytoskeletal reorganization and EC barrier enhancement. Using animal models of acute lung injury with vascular hyperpermeability, we observed that HTJ-1 knockdown blocked OxPAPC protection from interleukin-6 and ventilator-induced lung injury. Our data indicate for the first time an essential role of GRP78 and HTJ-1 in OxPAPC-mediated CEM dynamics and enhancement of vascular integrity.


2006 ◽  
Vol 189 (2) ◽  
pp. 381-395 ◽  
Author(s):  
P Sluka ◽  
L O’Donnell ◽  
J R Bartles ◽  
P G Stanton

Spermatogenesis is dependent on the ability of Sertoli cells to form mature junctions that maintain a unique environment within the seminiferous epithelium. Adjacent Sertoli cells form a junctional complex that includes classical adherens junctions and testis-specific ectoplasmic specialisations (ES). The regulation of inter-Sertoli cell junctions by the two main endocrine regulators of spermatogenesis, FSH and testosterone, is unclear. This study aimed to investigate the effects of FSH and testosterone on inter-Sertoli cell adherens junctions (as determined by immunolocalisation of cadherin, catenin and actin) and ES junctions (as determined by immunolocalisation of espin, actin and vinculin) in cultured immature Sertoli cells and GnRH-immunised adult rat testes given FSH or testosterone replacement in vivo. When hormones were absent in vitro, adherens junctions formed as discrete puncta between interdigitating, finger-like projections of Sertoli cells, but ES junctions were not present. The adherens junction puncta included actin filaments that were oriented perpendicularly to the Sertoli cell plasma membrane, but were not associated with the intermediate filament protein vimentin. When FSH was added in vitro, ES junctions formed, and adjacent adherens junction puncta fused into extensive adherens junction belts. After hormone suppression in vivo, ES junctions were absent, while FSH replacement restored ES junctions, as confirmed by electron microscopy and confocal analysis of ES-associated proteins. Testosterone alone did not affect adherens junctions or ES in vitro or in vivo. We conclude that FSH can regulate the formation of ES junctions and stimulate the organisation and orientation of extensive adherens junctions in Sertoli cells.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Miquella G. Chavez ◽  
Christian A. Buhr ◽  
Whitney K. Petrie ◽  
Angela Wandinger-Ness ◽  
Donna F. Kusewitt ◽  
...  

Modulation of cell : cell junctions is a key event in cutaneous wound repair. In this study we report that activation of the epidermal growth factor (EGF) receptor disrupts cel : cell adhesion, but with different kinetics and fates for the desmosomal cadherin desmoglein and for E-cadherin. Downregulation of desmoglein preceded that of E-cadherinin vivoand in an EGF-stimulatedin vitrowound reepithelialization model. Dual immunofluorescence staining revealed that neither E-cadherin nor desmoglein-2 internalized with the EGF receptor, or with one another. In response to EGF, desmoglein-2 entered a recycling compartment based on predominant colocalization with the recycling marker Rab11. In contrast, E-cadherin downregulation was accompanied by cleavage of the extracellular domain. A broad-spectrum matrix metalloproteinase inhibitor protected E-cadherin but not the desmosomal cadherin, desmoglein-2, from EGF-stimulated disruption. These findings demonstrate that although activation of the EGF receptor regulates adherens junction and desmosomal components, this stimulus downregulates associated cadherins through different mechanisms.


2014 ◽  
Vol 307 (3) ◽  
pp. H455-H463 ◽  
Author(s):  
Adama Sidibé ◽  
Helena Polena ◽  
Karin Pernet-Gallay ◽  
Jeremy Razanajatovo ◽  
Tiphaine Mannic ◽  
...  

Covalent modifications such as tyrosine phosphorylation are associated with the breakdown of endothelial cell junctions and increased vascular permeability. We previously showed that vascular endothelial (VE)-cadherin was tyrosine phosphorylated in vivo in the mouse reproductive tract and that Y685 was a target site for Src in response to vascular endothelial growth factor in vitro. In the present study, we aimed to understand the implication of VE-cadherin phosphorylation at site Y685 in cyclic angiogenic organs. To achieve this aim, we generated a knock-in mouse carrying a tyrosine-to-phenylalanine point mutation of VE-cadherin Y685 (VE-Y685F). Although homozygous VE-Y685F mice were viable and fertile, the nulliparous knock-in female mice exhibited enlarged uteri with edema. This phenotype was observed in 30% of females between 4 to 14 mo old. Histological examination of longitudinal sections of the VE-Y685F uterus showed an extensive disorganization of myometrium and endometrium with highly edematous uterine glands, numerous areas with sparse cells, and increased accumulation of collagen fibers around blood vessels, indicating a fibrotic state. Analysis of cross section of ovaries showed the appearance of spontaneous cysts, which suggested increased vascular hyperpermeability. Electron microscopy analysis of capillaries in the ovary showed a slight but significant increase in the gap size between two adjacent endothelial cell membranes in the junctions of VE-Y685F mice (wild-type, 11.5 ± 0.3, n = 78; and VE-Y685F, 12.48 ± 0.3, n = 65; P = 0.045), as well as collagen fiber accumulation around capillaries. Miles assay revealed that either basal or vascular endothelial growth factor-stimulated permeability in the skin was increased in VE-Y685F mice. Since edema and fibrotic appearance have been identified as hallmarks of initial increased vascular permeability, we conclude that the site Y685 in VE-cadherin is involved in the physiological regulation of capillary permeability. Furthermore, this knock-in mouse model is of potential interest for further studies of diseases that are associated with abnormal vascular permeability.


Blood ◽  
1995 ◽  
Vol 86 (7) ◽  
pp. 2760-2766 ◽  
Author(s):  
S Kanwar ◽  
RC Woodman ◽  
MC Poon ◽  
T Murohara ◽  
AM Lefer ◽  
...  

Desmopressin, (DDAVP; 1-desamino-8-D-arginine vasopressin) increases the release and activity of von Willebrand factor (vWF); however, its effects on the other major constituent of endothelial Weibel-Palade bodies, P-selectin, has not been investigated. DDAVP-induced P-selectin expression may explain DDAVP's efficacy in bleeding disorders in which vWF levels are normal. Therefore, the objective of this study is to assess the effect of DDAVP on P-selectin expression on endothelial cells of postcapillary venules in vivo and on human umbilical vein endothelium in vitro, and to determine whether DDAVP has direct effects on leukocyte behavior in postcapillary venules. DDAVP (0.1 and 1.0 microgram/mL) induced a significant but transient increase in P-selectin expression on human umbilical vein endothelial cells as well as on rat and human platelets. Immunohistochemical analysis of rat postcapillary venules showed that in contrast to saline, DDAVP injection (1 microgram/kg, intravenous) induced significant endothelial P-selectin expression. DDAVP administration also induced a rapid and significant increase in leukocyte rolling in rat mesenteric venules in vivo. This response was entirely dependent on P-selectin, as an anti-P-selectin antibody rapidly reversed the DDAVP-induced increase in leukocyte rolling. DDAVP induced leukocyte rolling in medium (20 to 40 microns) and large (> 40 microns), but not small (< 20 microns), postcapillary venules. In animals that were treated with DDAVP, there was a steady and significant increase in leukocyte adhesion. This study shows that DDAVP can directly induce P-selectin expression on endothelium in vitro and in vivo and that the latter response is capable of supporting prolonged leukocyte rolling in rat postcapillary venules.


Sign in / Sign up

Export Citation Format

Share Document