scholarly journals Bee1, a Yeast Protein with Homology to Wiscott-Aldrich Syndrome Protein, Is Critical for the Assembly of Cortical Actin Cytoskeleton

1997 ◽  
Vol 136 (3) ◽  
pp. 649-658 ◽  
Author(s):  
Rong Li

Yeast protein, Bee1, exhibits sequence homology to Wiskott-Aldrich syndrome protein (WASP), a human protein that may link signaling pathways to the actin cytoskeleton. Mutations in WASP are the primary cause of Wiskott-Aldrich syndrome, characterized by immuno-deficiencies and defects in blood cell morphogenesis. This report describes the characterization of Bee1 protein function in budding yeast. Disruption of BEE1 causes a striking change in the organization of actin filaments, resulting in defects in budding and cytokinesis. Rather than assemble into cortically associated patches, actin filaments in the buds of Δbee1 cells form aberrant bundles that do not contain most of the cortical cytoskeletal components. It is significant that Δbee1 is the only mutation reported so far that abolishes cortical actin patches in the bud. Bee1 protein is localized to actin patches and interacts with Sla1p, a Src homology 3 domain–containing protein previously implicated in actin assembly and function. Thus, Bee1 protein may be a crucial component of a cytoskeletal complex that controls the assembly and organization of actin filaments at the cell cortex.

1999 ◽  
Vol 144 (6) ◽  
pp. 1203-1218 ◽  
Author(s):  
M.Jamie T.V. Cope ◽  
Shirley Yang ◽  
Ching Shang ◽  
David G. Drubin

Ark1p (actin regulating kinase 1) was identified as a yeast protein that binds to Sla2p, an evolutionarily conserved cortical actin cytoskeleton protein. Ark1p and a second yeast protein, Prk1p, contain NH2-terminal kinase domains that are 70% identical. Together with six other putative kinases from a number of organisms, these proteins define a new protein kinase family that we have named the Ark family. Lack of both Ark1p and Prk1p resulted in the formation of large cytoplasmic actin clumps and severe defects in cell growth. These defects were rescued by wild-type, but not by kinase-dead versions of the proteins. Elevated levels of either Ark1p or Prk1p caused a number of actin and cell morphological defects that were not observed when the kinase-dead versions were overexpressed instead. Ark1p and Prk1p were shown to localize to actin cortical patches, making these two kinases the first signaling proteins demonstrated to be patch components. These results suggest that Ark1p and Prk1p may be downstream effectors of signaling pathways that control actin patch organization and function. Furthermore, results of double-mutant analyses suggest that Ark1p and Prk1p function in overlapping but distinct pathways that regulate the cortical actin cytoskeleton.


2005 ◽  
Vol 72 ◽  
pp. 119-127 ◽  
Author(s):  
Tamara Golub ◽  
Caroni Pico

The interactions of cells with their environment involve regulated actin-based motility at defined positions along the cell surface. Sphingolipid- and cholesterol-dependent microdomains (rafts) order proteins at biological membranes, and have been implicated in most signalling processes at the cell surface. Many membrane-bound components that regulate actin cytoskeleton dynamics and cell-surface motility associate with PtdIns(4,5)P2-rich lipid rafts. Although raft integrity is not required for substrate-directed cell spreading, or to initiate signalling for motility, it is a prerequisite for sustained and organized motility. Plasmalemmal rafts redistribute rapidly in response to signals, triggering motility. This process involves the removal of rafts from sites that are not interacting with the substrate, apparently through endocytosis, and a local accumulation at sites of integrin-mediated substrate interactions. PtdIns(4,5)P2-rich lipid rafts can assemble into patches in a process depending on PtdIns(4,5)P2, Cdc42 (cell-division control 42), N-WASP (neural Wiskott-Aldrich syndrome protein) and actin cytoskeleton dynamics. The raft patches are sites of signal-induced actin assembly, and their accumulation locally promotes sustained motility. The patches capture microtubules, which promote patch clustering through PKA (protein kinase A), to steer motility. Raft accumulation at the cell surface, and its coupling to motility are influenced greatly by the expression of intrinsic raft-associated components that associate with the cytosolic leaflet of lipid rafts. Among them, GAP43 (growth-associated protein 43)-like proteins interact with PtdIns(4,5)P2 in a Ca2+/calmodulin and PKC (protein kinase C)-regulated manner, and function as intrinsic determinants of motility and anatomical plasticity. Plasmalemmal PtdIns(4,5)P2-rich raft assemblies thus provide powerful organizational principles for tight spatial and temporal control of signalling in motility.


2011 ◽  
Vol 208 (5) ◽  
pp. 1055-1068 ◽  
Author(s):  
Bebhinn Treanor ◽  
David Depoil ◽  
Andreas Bruckbauer ◽  
Facundo D. Batista

Signaling microclusters are a common feature of lymphocyte activation. However, the mechanisms controlling the size and organization of these discrete structures are poorly understood. The Ezrin-Radixin-Moesin (ERM) proteins, which link plasma membrane proteins with the actin cytoskeleton and regulate the steady-state diffusion dynamics of the B cell receptor (BCR), are transiently dephosphorylated upon antigen receptor stimulation. In this study, we show that the ERM proteins ezrin and moesin influence the organization and integrity of BCR microclusters. BCR-driven inactivation of ERM proteins is accompanied by a temporary increase in BCR diffusion, followed by BCR immobilization. Disruption of ERM protein function using dominant-negative or constitutively active ezrin constructs or knockdown of ezrin and moesin expression quantitatively and qualitatively alters BCR microcluster formation, antigen aggregation, and downstream BCR signal transduction. Chemical inhibition of actin polymerization also altered the structure and integrity of BCR microclusters. Together, these findings highlight a crucial role for the cortical actin cytoskeleton during B cell spreading and microcluster formation and function.


Genetics ◽  
2002 ◽  
Vol 160 (3) ◽  
pp. 923-934
Author(s):  
Junko Mochida ◽  
Takaharu Yamamoto ◽  
Konomi Fujimura-Kamada ◽  
Kazuma Tanaka

Abstract Type I myosins in yeast, Myo3p and Myo5p (Myo3/5p), are involved in the reorganization of the actin cytoskeleton. The SH3 domain of Myo5p regulates the polymerization of actin through interactions with both Las17p, a homolog of mammalian Wiskott-Aldrich syndrome protein (WASP), and Vrp1p, a homolog of WASP-interacting protein (WIP). Vrp1p is required for both the localization of Myo5p to cortical patch-like structures and the ATP-independent interaction between the Myo5p tail region and actin filaments. We have identified and characterized a new adaptor protein, Mti1p (Myosin tail region-interacting protein), which interacts with the SH3 domains of Myo3/5p. Mti1p co-immunoprecipitated with Myo5p and Mti1p-GFP co-localized with cortical actin patches. A null mutation of MTI1 exhibited synthetic lethal phenotypes with mutations in SAC6 and SLA2, which encode actin-bundling and cortical actin-binding proteins, respectively. Although the mti1 null mutation alone did not display any obvious phenotype, it suppressed vrp1 mutation phenotypes, including temperature-sensitive growth, abnormally large cell morphology, defects in endocytosis and salt-sensitive growth. These results suggest that Mti1p and Vrp1p antagonistically regulate type I myosin functions.


2000 ◽  
Vol 20 (1) ◽  
pp. 12-25 ◽  
Author(s):  
Hsin-Yao Tang ◽  
Jing Xu ◽  
Mingjie Cai

ABSTRACT The EH domain proteins Pan1p and End3p of budding yeast have been known to form a complex in vivo and play important roles in organization of the actin cytoskeleton and endocytosis. In this report, we describe new findings concerning the function of the Pan1p-End3p complex. First, we found that the Pan1p-End3p complex associates with Sla1p, another protein known to be required for the assembly of cortical actin structures. Sla1p interacts with the first long repeat region of Pan1p and the N-terminal EH domain of End3p, thus leaving the Pan1p-End3p interaction, which requires the second long repeat of Pan1p and the C-terminal repeat region of End3p, undisturbed. Second, Pan1p, End3p, and Sla1p are also required for normal cell wall morphogenesis. Each of the Pan1-4, sla1Δ, andend3Δ mutants displays the abnormal cell wall morphology previously reported for the act1-1 mutant. These cell wall defects are also exhibited by wild-type cells overproducing the C-terminal region of Sla1p that is responsible for interactions with Pan1p and End3p. These results indicate that the functions of Pan1p, End3p, and Sla1p in cell wall morphogenesis may depend on the formation of a heterotrimeric complex. Interestingly, the cell wall abnormalities exhibited by these cells are independent of the actin cytoskeleton organization on the cell cortex, as they manifest despite the presence of apparently normal cortical actin cytoskeleton. Examination of several act1 mutants also supports this conclusion. These observations suggest that the Pan1p-End3p-Sla1p complex is required not only for normal actin cytoskeleton organization but also for normal cell wall morphogenesis in yeast.


1990 ◽  
Vol 111 (5) ◽  
pp. 1905-1911 ◽  
Author(s):  
L G Cao ◽  
Y L Wang

The contractile ring in dividing animal cells is formed primarily through the reorganization of existing actin filaments (Cao, L.-G., and Y.-L. Wang. 1990. J. Cell Biol. 110:1089-1096), but it is not clear whether the process involves a random recruitment of diffusible actin filaments from the cytoplasm, or a directional movement of cortically associated filaments toward the equator. We have studied this question by observing the distribution of actin filaments that have been labeled with fluorescent phalloidin and microinjected into dividing normal rat kidney (NRK) cells. The labeled filaments are present primarily in the cytoplasm during prometaphase and early metaphase, but become associated extensively with the cell cortex 10-15 min before the onset of anaphase. This process is manifested both as an increase in cortical fluorescence intensity and as movements of discrete aggregates of actin filaments toward the cortex. The concentration of actin fluorescence in the equatorial region, accompanied by a decrease of fluorescence in polar regions, is detected 2-3 min after the onset of anaphase. By directly tracing the distribution of aggregates of labeled actin filaments, we are able to detect, during anaphase and telophase, movements of cortical actin filaments toward the equator at an average rate of 1.0 micron/min. Our results, combined with previous observations, suggest that the organization of actin filaments during cytokinesis probably involves an association of cytoplasmic filaments with the cortex, a movement of cortical filaments toward the cleavage furrow, and a dissociation of filaments from the equatorial cortex.


2001 ◽  
Vol 114 (23) ◽  
pp. 4307-4318
Author(s):  
Marc G. Coppolino ◽  
Matthias Krause ◽  
Petra Hagendorff ◽  
David A. Monner ◽  
William Trimble ◽  
...  

Phagocytosis by macrophages and neutrophils involves the spatial and temporal reorganisation of the actin-based cytoskeleton at sites of particle ingestion. Local polymerisation of actin filaments supports the protrusion of pseudopodia that eventually engulf the particle. Here we have investigated in detail the cytoskeletal events initiated upon engagement of Fc receptors in macrophages. Ena/vasodilator-stimulated phosphoprotein (VASP) proteins were recruited to phagosomes forming around opsonised particles in both primary and immortalised macrophages. Not only did the localisation of Ena/VASP proteins coincide, spatially and temporally, with the phagocytosis-induced reorganisation of actin filaments, but their recruitment to the phagocytic cup was required for the remodelling of the actin cytoskeleton, extension of pseudopodia and efficient particle internalisation. We also report that SLP-76, Vav and profilin were recruited to forming phagosomes. Upon induction of phagocytosis, a large molecular complex, consisting in part of Ena/VASP proteins, the Fyn-binding/SLP-76-associated protein (Fyb/SLAP), Src-homology-2 (SH2)-domain-containing leukocyte protein of 76 kDa (SLP-76), Nck, and the Wiskott-Aldrich syndrome protein (WASP), was formed. Our findings suggest that activation of Fcγ receptors triggers two signalling events during phagocytosis: one through Fyb/SLAP that leads to recruitment of VASP and profilin; and another through Nck that promotes the recruitment of WASP. These converge to regulate actin polymerisation, controlling the assembly of actin structures that are essential for the process of phagocytosis.


2007 ◽  
Vol 18 (12) ◽  
pp. 4899-4910 ◽  
Author(s):  
Anne Chabadel ◽  
Inmaculada Bañon-Rodríguez ◽  
David Cluet ◽  
Brian B. Rudkin ◽  
Bernhard Wehrle-Haller ◽  
...  

The actin cytoskeleton of mature osteoclasts (OCs) adhering to nonmineralized substrates is organized in a belt of podosomes reminiscent of the sealing zone (SZ) found in bone resorbing OCs. In this study, we demonstrate that the belt is composed of two functionally different actin-based domains: podosome cores linked with CD44, which are involved in cell adhesion, and a diffuse cloud associated with β3 integrin, which is involved in cell adhesion and contraction. Wiskott Aldrich Syndrome Protein (WASp) Interacting Protein (WIP)−/− OCs were devoid of podosomes, but they still exhibited actin clouds. Indeed, WIP−/− OCs show diminished expression of WASp, which is required for podosome formation. CD44 is a novel marker of OC podosome cores and the first nonintegrin receptor detected in these structures. The importance of CD44 is revealed by showing that its clustering restores podosome cores and WASp expression in WIP−/− OCs. However, although CD44 signals are sufficient to form a SZ, the presence of WIP is indispensable for the formation of a fully functional SZ.


2017 ◽  
Vol 114 (7) ◽  
pp. 1595-1600 ◽  
Author(s):  
Thomas A. Masters ◽  
Folma Buss

Myosin VI (MYO6) is the only myosin known to move toward the minus end of actin filaments. It has roles in numerous cellular processes, including maintenance of stereocilia structure, endocytosis, and autophagosome maturation. However, the functional necessity of minus-end–directed movement along actin is unclear as the underlying architecture of the local actin network is often unknown. To address this question, we engineered a mutant of MYO6, MYO6+, which undergoes plus-end–directed movement while retaining physiological cargo interactions in the tail. Expression of this mutant motor in HeLa cells led to a dramatic reorganization of cortical actin filaments and the formation of actin-rich filopodia. MYO6 is present on peripheral adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1 (APPL1) signaling endosomes and MYO6+ expression causes a dramatic relocalization and clustering of this endocytic compartment in the cell cortex. MYO6+ and its adaptor GAIP interacting protein, C terminus (GIPC) accumulate at the tips of these filopodia, while APPL1 endosomes accumulate at the base. A combination of MYO6+ mutagenesis and siRNA-mediated depletion of MYO6 binding partners demonstrates that motor activity and binding to endosomal membranes mediated by GIPC and PI(4,5)P2 are crucial for filopodia formation. A similar reorganization of actin is induced by a constitutive dimer of MYO6+, indicating that multimerization of MYO6 on endosomes through binding to GIPC is required for this cellular activity and regulation of actin network structure. This unique engineered MYO6+ offers insights into both filopodia formation and MYO6 motor function at endosomes and at the plasma membrane.


1997 ◽  
Vol 17 (8) ◽  
pp. 4294-4304 ◽  
Author(s):  
H Y Tang ◽  
A Munn ◽  
M Cai

Several proteins from diverse organisms have been shown to share a region of sequence homology with the mammalian epidermal growth factor receptor tyrosine kinase substrate Eps15. Included in this new protein family, termed EH domain proteins, are two yeast proteins, Pan1p and End3p. We have shown previously that Pan1p is required for normal organization of the actin cytoskeleton and that it associates with the actin patches on the cell cortex. End3p has been shown by others to be an important factor in the process of endocytosis. End3p is also known to be required for the organization of the actin cytoskeleton. Here we report that Pan1p and End3p act as a complex in vivo. Using the pan1-4 mutant which we isolated and characterized previously, the END3 gene was identified as a suppressor of pan1-4 when overexpressed. Suppression of the pan1-4 mutation by multicopy END3 required the presence of the mutant Pan1p protein. Coimmunoprecipitation and two-hybrid protein interaction experiments indicated that Pan1p and End3p associate with each other. The localization of Pan1p to the cortical actin cytoskeleton became weakened in the end3 mutant at the permissive temperature and undetectable at the restrictive temperature, suggesting that End3p may be important for proper localization of Pan1p to the cortical actin cytoskeleton. The finding that the pan1-4 mutant was defective in endocytosis as severely as the end3 mutant under nonpermissive conditions supports the notion that the association between Pan1p and End3p is of physiological relevance. Together with results of earlier reports, these results provide strong evidence suggesting that Pan1p and End3p are the components of a complex that has essential functions in both the organization of cell membrane-associated actin cytoskeleton and the process of endocytosis.


Sign in / Sign up

Export Citation Format

Share Document