scholarly journals Targeted Deletion of the PEX2 Peroxisome Assembly Gene in Mice Provides a Model for Zellweger Syndrome, a Human Neuronal Migration Disorder

1997 ◽  
Vol 139 (5) ◽  
pp. 1293-1305 ◽  
Author(s):  
Phyllis L. Faust ◽  
Mary E. Hatten

Zellweger syndrome is a peroxisomal biogenesis disorder that results in abnormal neuronal migration in the central nervous system and severe neurologic dysfunction. The pathogenesis of the multiple severe anomalies associated with the disorders of peroxisome biogenesis remains unknown. To study the relationship between lack of peroxisomal function and organ dysfunction, the PEX2 peroxisome assembly gene (formerly peroxisome assembly factor-1) was disrupted by gene targeting. Homozygous PEX2-deficient mice survive in utero but die several hours after birth. The mutant animals do not feed and are hypoactive and markedly hypotonic. The PEX2-deficient mice lack normal peroxisomes but do assemble empty peroxisome membrane ghosts. They display abnormal peroxisomal biochemical parameters, including accumulations of very long chain fatty acids in plasma and deficient erythrocyte plasmalogens. Abnormal lipid storage is evident in the adrenal cortex, with characteristic lamellar–lipid inclusions. In the central nervous system of newborn mutant mice there is disordered lamination in the cerebral cortex and an increased cell density in the underlying white matter, indicating an abnormality of neuronal migration. These findings demonstrate that mice with a PEX2 gene deletion have a peroxisomal disorder and provide an important model to study the role of peroxisomal function in the pathogenesis of this human disease.

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi98-vi98
Author(s):  
Se-Hyuk Kim ◽  
Tae Hoon Roh ◽  
Hyunee Yim ◽  
Jin Roh ◽  
Kyi Beom Lee ◽  
...  

Abstract Succinate dehydrogenase (SDH) is a mitochondrial enzyme that plays an important role in both the Krebs cycle and the electron transport chain. SDH inactivation is associated with tumorigenesis in certain types of tumor. SDH consists of subunits A, B, C and D (SDHA, SDHB, SDHC, and SDHD, respectively). Immunohistochemistry for SDHB is a reliable method for detecting the inactivation of SDH by mutations in SDHA, SDHB, SDHC, SDHD and SDH complex assembly factor 2 (SDHAF2) genes with high sensitivity and specificity. SDHB immunohistochemistry has been used to examine the inactivation of SDH in various types of tumors. However, data on central nervous system (CNS) tumors are very limited. In the present study, we investigated the loss of SDHB immunoexpression in 90 cases of CNS tumors. Among the 90 cases of CNS tumors, only three cases of hemangioblastoma showed loss of SDHB immunoexpression. We further investigated SDHB immunoexpression in 35 cases of hemangioblastoma and found that 28 (80%) showed either negative or weak-diffuse pattern of SDHB immunoexpression, which suggests the inactivation of SDH. Our results suggest that SDH inactivation may represent an alternative pathway in the tumorigenesis of hemangioblastoma.


2006 ◽  
Vol 26 (24) ◽  
pp. 9352-9363 ◽  
Author(s):  
Hongkui Zeng ◽  
Alexander Gragerov ◽  
John G. Hohmann ◽  
Maria N. Pavlova ◽  
Brian A. Schimpf ◽  
...  

ABSTRACT Neuromedin U (NMU) is a highly conserved neuropeptide with a variety of physiological functions mediated by two receptors, peripheral NMUR1 and central nervous system NMUR2. Here we report the generation and phenotypic characterization of mice deficient in the central nervous system receptor NMUR2. We show that behavioral effects, such as suppression of food intake, enhanced pain response, and excessive grooming induced by intracerebroventricular NMU administration were abolished in the NMUR2 knockout (KO) mice, establishing a causal role for NMUR2 in mediating NMU's central effects on these behaviors. In contrast to the NMU peptide-deficient mice, NMUR2 KO mice appeared normal with regard to stress, anxiety, body weight regulation, and food consumption. However, the NMUR2 KO mice showed reduced pain sensitivity in both the hot plate and formalin tests. Furthermore, facilitated excitatory synaptic transmission in spinal dorsal horn neurons, a mechanism by which NMU stimulates pain, did not occur in NMUR2 KO mice. These results provide significant insights into a functional dissection of the differential contribution of peripherally or centrally acting NMU system. They suggest that NMUR2 plays a more significant role in central pain processing than other brain functions including stress/anxiety and regulation of feeding.


Author(s):  
Peter G. Barth

Abstract:Neuronal migration constitutes one of the major processes by which the central nervous system takes shape. Detailed knowledge about this important process now exists for different brain regions in rodent and monkey models as well as in the human. In the human, distinct genetic, chromosomal and environmental causes are known that affect neuronal migration, often in a morphologically distinct pattern, but the underlying pathological mechanisms are largely unknown. This review is intended to integrate our basic knowledge of the field with the accumulated intelligence on a large number of disorders and syndromes that represent the human part of the story.


Sign in / Sign up

Export Citation Format

Share Document