scholarly journals The Tim54p–Tim22p Complex Mediates Insertion of Proteins into the Mitochondrial Inner Membrane

1997 ◽  
Vol 139 (7) ◽  
pp. 1663-1675 ◽  
Author(s):  
Oliver Kerscher ◽  
Jason Holder ◽  
Maithreyan Srinivasan ◽  
Roxanne S. Leung ◽  
Robert E. Jensen

We have identified a new protein, Tim54p, located in the yeast mitochondrial inner membrane. Tim54p is an essential import component, required for the insertion of at least two polytopic proteins into the inner membrane, but not for the translocation of precursors into the matrix. Several observations suggest that Tim54p and Tim22p are part of a protein complex in the inner membrane distinct from the previously characterized Tim23p-Tim17p complex. First, multiple copies of the TIM22 gene, but not TIM23 or TIM17, suppress the growth defect of a tim54-1 temperature-sensitive mutant. Second, Tim22p can be coprecipitated with Tim54p from detergent-solubilized mitochondria, but Tim54p and Tim22p do not interact with either Tim23p or Tim17p. Finally, the tim54-1 mutation destabilizes the Tim22 protein, but not Tim23p or Tim17p. Our results support the idea that the mitochondrial inner membrane carries two independent import complexes: one required for the translocation of proteins across the inner membrane (Tim23p–Tim17p), and the other required for the insertion of proteins into the inner membrane (Tim54p–Tim22p).

2006 ◽  
Vol 17 (9) ◽  
pp. 4051-4062 ◽  
Author(s):  
Michelle R. Gallas ◽  
Mary K. Dienhart ◽  
Rosemary A. Stuart ◽  
Roy M. Long

Many mitochondrial proteins are encoded by nuclear genes and after translation in the cytoplasm are imported via translocases in the outer and inner membranes, the TOM and TIM complexes, respectively. Here, we report the characterization of the mitochondrial protein, Mmp37p (YGR046w) and demonstrate its involvement in the process of protein import into mitochondria. Haploid cells deleted of MMP37 are viable but display a temperature-sensitive growth phenotype and are inviable in the absence of mitochondrial DNA. Mmp37p is located in the mitochondrial matrix where it is peripherally associated with the inner membrane. We show that Mmp37p has a role in the translocation of proteins across the mitochondrial inner membrane via the TIM23-PAM complex and further demonstrate that substrates containing a tightly folded domain in close proximity to their mitochondrial targeting sequences display a particular dependency on Mmp37p for mitochondrial import. Prior unfolding of the preprotein, or extension of the region between the targeting signal and the tightly folded domain, relieves their dependency for Mmp37p. Furthermore, evidence is presented to show that Mmp37 may affect the assembly state of the TIM23 complex. On the basis of these findings, we hypothesize that the presence of Mmp37p enhances the early stages of the TIM23 matrix import pathway to ensure engagement of incoming preproteins with the mtHsp70p/PAM complex, a step that is necessary to drive the unfolding and complete translocation of the preprotein into the matrix.


2000 ◽  
Vol 11 (1) ◽  
pp. 103-116 ◽  
Author(s):  
Oliver Kerscher ◽  
Naresh B. Sepuri ◽  
Robert E. Jensen

The mitochondrial inner membrane contains two separate translocons: one required for the translocation of matrix-targeted proteins (the Tim23p-Tim17p complex) and one for the insertion of polytopic proteins into the mitochondrial inner membrane (the Tim54p-Tim22p complex). To identify new members of the Tim54p-Tim22p complex, we screened for high-copy suppressors of the temperature-sensitivetim54-1 mutant. We identified a new gene,TIM18, that encodes an integral protein of the inner membrane. The following genetic and biochemical observations suggest that the Tim18 protein is part of the Tim54p-Tim22p complex in the inner membrane: multiple copies of TIM18 suppress thetim54-1 growth defect; thetim18::HIS3 disruption is synthetically lethal with tim54-1; Tim54p and Tim22p can be coimmune precipitated with the Tim18 protein; and Tim18p, along with Tim54p and Tim22p, is detected in an ∼300-kDa complex after blue native electrophoresis. We propose that Tim18p is a new component of the Tim54p-Tim22p machinery that facilitates insertion of polytopic proteins into the mitochondrial inner membrane.


2009 ◽  
Vol 20 (20) ◽  
pp. 4444-4457 ◽  
Author(s):  
Keisuke Sato ◽  
Yoichi Noda ◽  
Koji Yoda

Fungal sphingolipids have inositol-phosphate head groups, which are essential for the viability of cells. These head groups are added by inositol phosphorylceramide (IPC) synthase, and AUR1 has been thought to encode this enzyme. Here, we show that an essential protein encoded by KEI1 is a novel subunit of IPC synthase of Saccharomyces cerevisiae. We find that Kei1 is localized in the medial-Golgi and that Kei1 is cleaved by Kex2, a late Golgi processing endopeptidase; therefore, it recycles between the medial- and late Golgi compartments. The growth defect of kei1-1, a temperature-sensitive mutant, is effectively suppressed by the overexpression of AUR1, and Aur1 and Kei1 proteins form a complex in vivo. The kei1-1 mutant is hypersensitive to aureobasidin A, a specific inhibitor of IPC synthesis, and the IPC synthase activity in the mutant membranes is thermolabile. A part of Aur1 is missorted to the vacuole in kei1-1 cells. We show that the amino acid substitution in kei1-1 causes release of Kei1 during immunoprecipitation of Aur1 and that Aur1 without Kei1 has hardly detectable IPC synthase activity. From these results, we conclude that Kei1 is essential for both the activity and the Golgi localization of IPC synthase.


2020 ◽  
Vol 401 (6-7) ◽  
pp. 723-736 ◽  
Author(s):  
Dejana Mokranjac

AbstractBiogenesis of mitochondria relies on import of more than 1000 different proteins from the cytosol. Approximately 70% of these proteins follow the presequence pathway – they are synthesized with cleavable N-terminal extensions called presequences and reach the final place of their function within the organelle with the help of the TOM and TIM23 complexes in the outer and inner membranes, respectively. The translocation of proteins along the presequence pathway is powered by the import motor of the TIM23 complex. The import motor of the TIM23 complex is localized at the matrix face of the inner membrane and is likely the most complicated Hsp70-based system identified to date. How it converts the energy of ATP hydrolysis into unidirectional translocation of proteins into mitochondria remains one of the biggest mysteries of this translocation pathway. Here, the knowns and the unknowns of the mitochondrial protein import motor are discussed.


Sign in / Sign up

Export Citation Format

Share Document