P1-431 Immortalized neural stem cells with a temperature-sensitive mutant of SV40 large T antigens for CNS gene transfer

2004 ◽  
Vol 25 ◽  
pp. S222 ◽  
Author(s):  
Haiyan Zhang ◽  
Lan Lan ◽  
Yongmei Zhao ◽  
Deyi Duan ◽  
Qunyuan Xu
2018 ◽  
Vol 293 (21) ◽  
pp. 8113-8127 ◽  
Author(s):  
Moustafa Sakr ◽  
Xiao-Yan Li ◽  
Farideh Sabeh ◽  
Tamar Y. Feinberg ◽  
John J. G. Tesmer ◽  
...  

Following ENU mutagenesis, a phenodeviant line was generated, termed the “Cartoon mouse,” that exhibits profound defects in growth and development. Cartoon mice harbor a single S466P point mutation in the MT1-MMP hemopexin domain, a 200-amino acid segment that is thought to play a critical role in regulating MT1-MMP collagenolytic activity. Herein, we demonstrate that the MT1-MMPS466P mutation replicates the phenotypic status of Mt1-mmp–null animals as well as the functional characteristics of MT1-MMP−/− cells. However, rather than a loss-of-function mutation acquired as a consequence of defects in MT1-MMP proteolytic activity, the S466P substitution generates a misfolded, temperature-sensitive mutant that is abnormally retained in the endoplasmic reticulum (ER). By contrast, the WT hemopexin domain does not play a required role in regulating MT1-MMP trafficking, as a hemopexin domain-deletion mutant is successfully mobilized to the cell surface and displays nearly normal collagenolytic activity. Alternatively, when MT1-MMPS466P–expressing cells are cultured at a permissive temperature of 25 °C that depresses misfolding, the mutant successfully traffics from the ER to the trans-Golgi network (ER → trans-Golgi network), where it undergoes processing to its mature form, mobilizes to the cell surface, and expresses type I collagenolytic activity. Together, these analyses define the Cartoon mouse as an unexpected gain-of-abnormal function mutation, wherein the temperature-sensitive mutant phenocopies MT1-MMP−/− mice as a consequence of eliciting a specific ER → trans-Golgi network trafficking defect.


Sign in / Sign up

Export Citation Format

Share Document