scholarly journals Isolation of Functional Golgi-derived Vesicles with a Possible Role in Retrograde Transport

1998 ◽  
Vol 140 (3) ◽  
pp. 541-551 ◽  
Author(s):  
Harold D. Love ◽  
Chung-Chih Lin ◽  
Craig S. Short ◽  
Joachim Ostermann

Secretory proteins enter the Golgi apparatus when transport vesicles fuse with the cis-side and exit in transport vesicles budding from the trans-side. Resident Golgi enzymes that have been transported in the cis-to-trans direction with the secretory flow must be recycled constantly by retrograde transport in the opposite direction. In this study, we describe the functional characterization of Golgi-derived transport vesicles that were isolated from tissue culture cells. We found that under the steady-state conditions of a living cell, a fraction of resident Golgi enzymes was found in vesicles that could be separated from cisternal membranes. These vesicles appeared to be depleted of secretory cargo. They were capable of binding to and fusion with isolated Golgi membranes, and after fusion their enzymatic contents most efficiently processed cargo that had just entered the Golgi apparatus. Those results indicate a possible role for these structures in recycling of Golgi enzymes in the Golgi stack.

1999 ◽  
Vol 147 (7) ◽  
pp. 1457-1472 ◽  
Author(s):  
Chung-Chih Lin ◽  
Harold D. Love ◽  
Jennifer N. Gushue ◽  
John J.M. Bergeron ◽  
Joachim Ostermann

Secretory proteins exit the ER in transport vesicles that fuse to form vesicular tubular clusters (VTCs) which move along microtubule tracks to the Golgi apparatus. Using the well-characterized in vitro approach to study the properties of Golgi membranes, we determined whether the Golgi enzyme NAGT I is transported to ER/Golgi intermediates. Secretory cargo was arrested at distinct steps of the secretory pathway of a glycosylation mutant cell line, and in vitro complementation of the glycosylation defect was determined. Complementation yield increased after ER exit of secretory cargo and was optimal when transport was blocked at an ER/Golgi intermediate step. The rapid drop of the complementation yield as secretory cargo progresses into the stack suggests that Golgi enzymes are preferentially targeted to ER/Golgi intermediates and not to membranes of the Golgi stack. Two mechanisms for in vitro complementation could be distinguished due to their different sensitivities to brefeldin A (BFA). Transport occurred either by direct fusion of preexisting transport intermediates with ER/Golgi intermediates, or it occurred as a BFA-sensitive and most likely COP I–mediated step. Direct fusion of ER/Golgi intermediates with cisternal membranes of the Golgi stack was not observed under these conditions.


1985 ◽  
Vol 31 (1) ◽  
pp. 62-67 ◽  
Author(s):  
Marianne Rice ◽  
T. J. Fitzgerald

Following testicular infection of rabbits with Treponema pallidum, different antibodies become detectable initially at the time of healing. Experiments were performed to determine a functional role for these antibodies. Rabbits were sacrificed after 4–8 days. Treponemal numbers steadily increased for 10–12 days. Thereafter, host defenses were sufficiently stimulated to begin clearing the organisms. Antibodies in serum and antibodies localized at the site of infection were quantitated using radioimmunoassay and enzyme-linked immunosorbent assay (ELISA) techniques. Anti-treponemal lgG was detected as early as day 4. Quantities of antibody correspondingly increased with time following infection. Treponema pallidum was harvested 7 and 14 days postinfection and tested for surface antibodies. With increasing days postinfection, more antibody was found on the organisms. Two functional properties of these antibodies were shown. Sera from 24 of 45 rabbits infected for 14 days immobilized T. pallidum in the presence of complement and 14-day sera blocked the attachment of T. pallidum to tissue culture cells. We suggest that antibody-mediated, complement-dependent immobilization of T. pallidum and blockage of attachment are at least partially responsible for healing of testicular lesions.


2002 ◽  
Vol 115 (6) ◽  
pp. 1259-1271 ◽  
Author(s):  
Hsin-Pei Shih ◽  
Karen G. Hales ◽  
John R. Pringle ◽  
Mark Peifer

The septins are a family of proteins involved in cytokinesis and other aspects of cell-cortex organization. In a two-hybrid screen designed to identify septin-interacting proteins in Drosophila, we isolated several genes, including homologues (Dmuba2 and Dmubc9) of yeast UBA2 and UBC9. Yeast Uba2p and Ubc9p are involved in the activation and conjugation, respectively, of the ubiquitin-like protein Smt3p/SUMO, which becomes conjugated to a variety of proteins through this pathway. Uba2p functions together with a second protein, Aos1p. We also cloned and characterized the Drosophila homologues of AOS1(Dmaos1) and SMT3 (Dmsmt3). Our biochemical data suggest that DmUba2/DmAos1 and DmUbc9 indeed act as activating and conjugating enzymes for DmSmt3, implying that this protein-conjugation pathway is well conserved in Drosophila. Immunofluorescence studies showed that DmUba2 shuttles between the embryonic cortex and nuclei during the syncytial blastoderm stage. In older embryos, DmUba2 and DmSmt3 are both concentrated in the nuclei during interphase but dispersed throughout the cells during mitosis, with DmSmt3 also enriched on the chromosomes during mitosis. These data suggest that DmSmt3 could modify target proteins both inside and outside the nuclei. We did not observe any concentration of DmUba2 at sites where the septins are concentrated, and we could not detect DmSmt3 modification of the three Drosophila septins tested. However, we did observe DmSmt3 localization to the midbody during cytokinesis both in tissue-culture cells and in embryonic mitotic domains, suggesting that DmSmt3 modification of septins and/or other midzone proteins occurs during cytokinesis in Drosophila.


1994 ◽  
Vol 124 (4) ◽  
pp. 415-424 ◽  
Author(s):  
Z Elazar ◽  
L Orci ◽  
J Ostermann ◽  
M Amherdt ◽  
G Tanigawa ◽  
...  

The coat proteins required for budding COP-coated vesicles from Golgi membranes, coatomer and ADP-ribosylation factor (ARF) protein, are shown to be required to reconstitute the orderly process of transport between Golgi cisternae in which fusion of transport vesicles begins only after budding ends. When either coat protein is omitted, fusion is uncoupled from budding-donor and acceptor compartments pair directly without an intervening vesicle. Coupling may therefore results from the sequestration of fusogenic membrane proteins into assembling coated vesicles that are only exposed when the coat is removed after budding is complete. This mechanism of coupling explains the phenomenon of "retrograde transport" triggered by uncouplers such as the drug brefeldin A.


2004 ◽  
Vol 24 (5) ◽  
pp. 2012-2024 ◽  
Author(s):  
Hiroko Matsubayashi ◽  
Sonoka Sese ◽  
Jong-Seo Lee ◽  
Tadaoki Shirakawa ◽  
Takeshi Iwatsubo ◽  
...  

ABSTRACT Regulation of Armadillo (Arm) protein levels through ubiquitin-mediated degradation plays a central role in the Wingless (Wg) signaling. Although zeste-white3 (Zw3)-mediated Arm phosphorylation has been implicated in its degradation, we have recently shown that casein kinase Iα (CKIα) also phosphorylates Arm and induces its degradation. However, it remains unclear how CKIα and Zw3, as well as other components of the Arm degradation complex, regulate Arm phosphorylation in response to Wg. In particular, whether Wg signaling suppresses CKIα- or Zw3-mediated Arm phosphorylaytion in vivo is unknown. To clarify these issues, we performed a series of RNA interference (RNAi)-based analyses in Drosophila S2R+ cells by using antibodies that specifically recognize Arm phosphorylated at different serine residues. These analyses revealed that Arm phosphorylation at serine-56 and at threonine-52, serine-48, and serine-44, is mediated by CKIα and Zw3, respectively, and that Zw3-directed Arm phosphorylation requires CKIα-mediated priming phosphorylation. Daxin stimulates Zw3- but not CKIα-mediated Arm phosphorylation. Wg suppresses Zw3- but not CKIα-mediated Arm phosphorylation, indicating that a vital regulatory step in Wg signaling is Zw3-mediated Arm phosphorylation. In addition, further RNAi-based analyses of the other aspects of the Wg pathway clarified that Wg-induced Dishevelled phosphoylation is due to CKIα and that presenilin and protein kinase A play little part in the regulation of Arm protein levels in Drosophila tissue culture cells.


Author(s):  
Laining Zhang ◽  
Tetyana Smertenko ◽  
Deirdre Fahy ◽  
Nuria Koteyeva ◽  
Natalia Moroz ◽  
...  

AbstractThe phragmoplast separates daughter cells during cytokinesis by constructing the cell plate, which depends on interaction between cytoskeleton and membrane compartments. Proteins responsible for these interactions remain unknown, but formins can link cytoskeleton with membranes and several members of formin protein family localize to the cell plate. Progress in functional characterization of formins in cytokinesis is hindered by functional redundancies within the large formin gene family. We addressed this limitation by employing Small Molecular Inhibitor of Formin Homology 2 (SMIFH2), a small-molecule inhibitor of formins. Treatment of tobacco (Nicotiana tabacum) tissue culture cells with SMIFH2 perturbed localization of actin at the cell plate; slowed down both microtubule polymerization and phragmoplast expansion; diminished association of dynamin-related proteins with the cell plate independently of actin and microtubules; and caused cell plate swelling. Another impact of SMIFH2 was shortening of the END BINDING1b (EB1b) and EB1c comets on the growing microtubule plus ends in N. tabacum tissue culture cells and Arabidopsis thaliana cotyledon epidermis cells. The shape of the EB1 comets in the SMIFH2-treated cells resembled that of the knockdown mutant of plant Xenopus Microtubule-Associated protein of 215 kDa (XMAP215) homolog MICROTUBULE ORGANIZATION 1/GEMINI 1 (MOR1/GEM1). This outcome suggests that formins promote elongation of tubulin flares on the growing plus ends. Formins AtFH1 (A. thaliana Formin Homology 1) and AtFH8 can also interact with EB1. Besides cytokinesis, formins function in the mitotic spindle assembly and metaphase to anaphase transition. Our data suggest that during cytokinesis formins function in: (1) promoting microtubule polymerization; (2) nucleating F-actin at the cell plate; (3) retaining dynamin-related proteins at the cell plate; and (4) remodeling of the cell plate membrane.


Author(s):  
Delbert E. Philpott ◽  
Akira Takahashi ◽  
Charles Turnbill

Tissue culture cells of two varieties, L-929 mouse fibroblasts and Don Chinese Hamster lung, were exposed to 100% oxygen at one atmosphere and one-third of one atmosphere. When exposed to oxygen, the pH of the medium rose rapidly from 7.4 to about 8.4 and remained at this level. The organelles and general appearance of the cytoplasm were altered.In the control cells two or three small Golgi apparatus (G.A.) are usually observed. However, after oxygen exposure the G.A. appears dilated, in closer proximity to the nucleus, larger and apparently decreased in number. The endoplasmic reticulum decreases in amount and size. Concurrently, the number of ribosomes also decreases giving the cytoplasm a lighter appearance.


1989 ◽  
Vol 94 (4) ◽  
pp. 725-731
Author(s):  
M.E. Bramwell ◽  
S.M. Humm

Using immunoblotting techniques, the antigen that binds the monoclonal antibody M27 has been clearly defined in terms of apparent molecular mass and distribution. In reducing conditions it has an apparent mass of 178K (K = 10(3) Mr) and is present in the cytoplasm and membranes of all mammalian tissue culture cells so far examined. It is absent from lines derived from avian, piscine and amphibian sources. It is also absent from foetal liver of both rat and mouse, but subsequently appears after cultivation in vitro. Similarly, it can be detected on rat lymphocytes only after mitogenic stimulation. However, it is found on both hepatoma and lymphoma cells in vitro, and on in vivo tumours from murine sources. It thus appears to be associated with cell proliferation.


Sign in / Sign up

Export Citation Format

Share Document