scholarly journals Capacitative Calcium Entry Deficits and Elevated Luminal Calcium Content in Mutant Presenilin-1 Knockin Mice

2000 ◽  
Vol 149 (4) ◽  
pp. 793-798 ◽  
Author(s):  
Malcolm A. Leissring ◽  
Yama Akbari ◽  
Christopher M. Fanger ◽  
Michael D. Cahalan ◽  
Mark P. Mattson ◽  
...  

Dysregulation of calcium signaling has been causally implicated in brain aging and Alzheimer's disease. Mutations in the presenilin genes (PS1, PS2), the leading cause of autosomal dominant familial Alzheimer's disease (FAD), cause highly specific alterations in intracellular calcium signaling pathways that may contribute to the neurodegenerative and pathological lesions of the disease. To elucidate the cellular mechanisms underlying these disturbances, we studied calcium signaling in fibroblasts isolated from mutant PS1 knockin mice. Mutant PS1 knockin cells exhibited a marked potentiation in the amplitude of calcium transients evoked by agonist stimulation. These cells also showed significant impairments in capacitative calcium entry (CCE, also known as store-operated calcium entry), an important cellular signaling pathway wherein depletion of intracellular calcium stores triggers influx of extracellular calcium into the cytosol. Notably, deficits in CCE were evident after agonist stimulation, but not if intracellular calcium stores were completely depleted with thapsigargin. Treatment with ionomycin and thapsigargin revealed that calcium levels within the ER were significantly increased in mutant PS1 knockin cells. Collectively, our findings suggest that the overfilling of calcium stores represents the fundamental cellular defect underlying the alterations in calcium signaling conferred by presenilin mutations.

1995 ◽  
Vol 311 (1) ◽  
pp. 41-44 ◽  
Author(s):  
C C Petersen ◽  
M J Berridge ◽  
M F Borgese ◽  
D L Bennett

Capacitative calcium entry is a major pathway through which intracellular calcium stores are refilled after stimulation. It has been suggested that the protein encoded by the transient receptor potential (trp) gene expressed in Drosophila photoreceptors may be homologous with capacitative calcium entry channels. Expression of the trp gene product in Xenopus oocytes led to significant increases in calcium entry only when the intracellular calcium stores were depleted. Previous investigations have found trp to be uniquely expressed in Drosophila photoreceptors, but PCR cloning shows that homologous proteins exist in Calliphora, mouse brain and Xenopus oocytes. It is thus possible that capacitative calcium entry in Xenopus oocytes is mediated by a homologue of trp.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Simona Magi ◽  
Pasqualina Castaldo ◽  
Maria Loredana Macrì ◽  
Marta Maiolino ◽  
Alessandra Matteucci ◽  
...  

Alzheimer’s Disease (AD) is a neurodegenerative disorder characterized by progressive neuronal loss. AD is associated with aberrant processing of the amyloid precursor protein, which leads to the deposition of amyloid-βplaques within the brain. Together with plaques deposition, the hyperphosphorylation of the microtubules associated protein tau and the formation of intraneuronal neurofibrillary tangles are a typical neuropathological feature in AD brains. Cellular dysfunctions involving specific subcellular compartments, such as mitochondria and endoplasmic reticulum (ER), are emerging as crucial players in the pathogenesis of AD, as well as increased oxidative stress and dysregulation of calcium homeostasis. Specifically, dysregulation of intracellular calcium homeostasis has been suggested as a common proximal cause of neural dysfunction in AD. Aberrant calcium signaling has been considered a phenomenon mainly related to the dysfunction of intracellular calcium stores, which can occur in both neuronal and nonneuronal cells. This review reports the most recent findings on cellular mechanisms involved in the pathogenesis of AD, with main focus on the control of calcium homeostasis at both cytosolic and mitochondrial level.


Cell Calcium ◽  
2015 ◽  
Vol 58 (3) ◽  
pp. 254-263 ◽  
Author(s):  
V. Gobin ◽  
M. De Bock ◽  
B.J.G. Broeckx ◽  
M. Kiselinova ◽  
W. De Spiegelaere ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document