scholarly journals A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice

2001 ◽  
Vol 155 (1) ◽  
pp. 123-132 ◽  
Author(s):  
Michelle Wehling ◽  
Melissa J. Spencer ◽  
James G. Tidball

Dystrophin-deficient muscles experience large reductions in expression of nitric oxide synthase (NOS), which suggests that NO deficiency may influence the dystrophic pathology. Because NO can function as an antiinflammatory and cytoprotective molecule, we propose that the loss of NOS from dystrophic muscle exacerbates muscle inflammation and fiber damage by inflammatory cells. Analysis of transgenic mdx mice that were null mutants for dystrophin, but expressed normal levels of NO in muscle, showed that the normalization of NO production caused large reductions in macrophage concentrations in the mdx muscle. Expression of the NOS transgene in mdx muscle also prevented the majority of muscle membrane injury that is detectable in vivo, and resulted in large decreases in serum creatine kinase concentrations. Furthermore, our data show that mdx muscle macrophages are cytolytic at concentrations that occur in dystrophic, NOS-deficient muscle, but are not cytolytic at concentrations that occur in dystrophic mice that express the NOS transgene in muscle. Finally, our data show that antibody depletions of macrophages from mdx mice cause significant reductions in muscle membrane injury. Together, these findings indicate that macrophages promote injury of dystrophin-deficient muscle, and the loss of normal levels of NO production by dystrophic muscle exacerbates inflammation and membrane injury in muscular dystrophy.

1996 ◽  
Vol 184 (2) ◽  
pp. 609-618 ◽  
Author(s):  
D S Chao ◽  
J R Gorospe ◽  
J E Brenman ◽  
J A Rafael ◽  
M F Peters ◽  
...  

Becker muscular dystrophy is an X-linked disease due to mutations of the dystrophin gene. We now show that neuronal-type nitric oxide synthase (nNOS), an identified enzyme in the dystrophin complex, is uniquely absent from skeletal muscle plasma membrane in many human Becker patients and in mouse models of dystrophinopathy. An NH2-terminal domain of nNOS directly interacts with alpha 1-syntrophin but not with other proteins in the dystrophin complex analyzed. However, nNOS does not associate with alpha 1-syntrophin on the sarcolemma in transgenic mdx mice expressing truncated dystrophin proteins. This suggests a ternary interaction of nNOS, alpha 1-syntrophin, and the central domain of dystrophin in vivo, a conclusion supported by developmental studies in muscle. These data indicate that proper assembly of the dystrophin complex is dependent upon the structure of the central rodlike domain and have implications for the design of dystrophin-containing vectors for gene therapy.


2000 ◽  
Vol 78 (6) ◽  
pp. 500-506 ◽  
Author(s):  
S Wang ◽  
G Wright ◽  
J Harrah ◽  
R Touchon ◽  
W McCumbee ◽  
...  

The effect of short-term exposure to homocysteine (Hcy) on the contractile characteristics of rat aortic tissue was assessed both in vitro and in vivo. The contractile response of Hcy-treated aortic rings in culture for 1 or 4 days was unchanged from control responses. By comparison, aortic rings from animals injected with Hcy showed marked attenuation of response compared with controls injected with saline, cysteine or methionine. The contractile response to K+ was decreased within 24 hours of Hcy injection, whereas the response to both K+ (-27%) and noradrenaline (-56%) was significantly decreased by 4 days. In contrast, the contractile response to phorbol-12,13-dibutyrate was not different between Hcy and control groups. Intimal rubbing completely restored the responsiveness of Hcy-treated tissue to K+ and noradrenaline. By comparison, L-NAME only partially restored contractile responsiveness, while the cyclooxygenase inhibitor indomethacin had no effect on contractile attenuation induced by Hcy. Western blot analysis showed a 2-fold increase of endothelial nitric oxide synthase (eNOS) and a 3-fold increase in inducible nitric oxide synthase (iNOS) protein expression in the aortic endothelial cells from Hcy-injected rats. The results indicate an early detectable effect of Hcy on the in vivo contractile properties of vascular smooth muscle. The effect is endothelium-mediated and may vary depending on the agonist studied. The mechanism is uncertain but appears to involve increased nitric oxide (NO) production. Finally, the data suggest that attenuation of contraction may not be due to a direct effect of Hcy but that the compound is modified or acts indirectly in vivo.Key words: nitric oxide, nitric oxide synthase, in vivo, smooth muscle.


1997 ◽  
Vol 322 (2) ◽  
pp. 609-613 ◽  
Author(s):  
Song Kyu PARK ◽  
Hsin Lee LIN ◽  
Sean MURPHY

Treatment of astroglial cells with interleukin 1β and interferon γ transcriptionally activates the nitric oxide synthase (NOS)-2 gene. The duration of mRNA expression is brief because of transcript instability. In addition, NO donors reduce the expression of NOS-2 mRNA dramatically by reducing the rate of transcription. In this study we observed that the NO donor, spermine NONOate did not inhibit the activation and translocation of NF-κB, a key transcription factor in the induction of NOS-2, but inhibited formation of the NF-κB–DNA complex. This effect was reversed by methaemoglobin (acting as an NO trap) and by the reducing agent dithiothreitol. Formation of the interferon-regulatory factor–DNA complex was unaffected by NO. These results suggest that NO can modulate its own production by interfering with NF-κB interaction with the promoter region of the NOS gene, a negative feedback effect that may be important for limiting NO production in vivo.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Tamer M Mohamed ◽  
Delvac Oceandy ◽  
Nasser Alatwi ◽  
Florence Baudoin ◽  
Elizabeth J Cartwright ◽  
...  

The pivotal role of neuronal nitric oxide synthase (nNOS) in regulating cardiac function has only recently been unveiled. Notably, others have shown that responsiveness to β-adrenergic stimulation is dependent on nNOS activity. In a cellular model, we showed that the Ca 2+ /calmodulin-dependent nNOS activity is reduced by overexpression of isoform 4b of the plasma membrane Ca 2+ /Calmodulin-dependent Ca 2+ -pump (PMCA4b), which binds to nNOS. We demonstrated that PMCA4b overexpression in the heart reduced β-adrenergic responsiveness in vivo via an nNOS dependent mechanism (Oceandy et al, Circulation 2007). Here we investigated the cellular mechanisms of the regulation of the β-adrenergic response by PMCA4b. We used an adenoviral system to overexpress PMCA4b (PMCA4b cells) or LacZ (control, C) in neonatal rat cardiomyocytes. PMCA4b cells showed an 18±5% and 24±5% reduction in nitric oxide (DAF-FM fluorescence) and cGMP levels, respectively (n=6, p<0.05 each) compared to C demonstrating the regulation of NO production by the PMCA4b in this system. Since nNOS has been shown to regulate phospholamban (PLB) phosphorylation, we examined phosphorylation of PLB at Ser16. PMCA4b cells showed a significant increase in Ser16-PLB at baseline (66±17%, p<0.05) compared to C. As a result of increased baseline Ser16-PLB in PMCA4b cells, β-adrenergic stimulation of PMCA4b cells using 2μM isoproter-enol (IP) showed reduced relative induction in Ser16-PLB (23±10% vs. 78±19% in C; n=5, p<0.05). Further analysis in adult cardiomyocytes isolated from our PMCA4b transgenic mice (PMCA4b TG) demonstrated that PMCA4b TG showed 3-fold higher Ser16-PLB phosphorylation at baseline compared to wild type (WT) myocytes and the relative response following β-adrenergic stimulation was significantly reduced (1.2±0.2 fold induction after IP treatment in PMCA4b TG, vs. 3.1±0.7 in WT, n=5, p<0.05). Thus, PMCA4b regulates NO production from nNOS, which in turn modulates cGMP levels and PLB phosphorylation. These findings provide mechanistic insight into the regulation of the β-adrenergic response in the heart by PMCA4b and place this Ca 2+ -pump upstream of the recently described pathway linking nNOS and Ser16-PLB phosphorylation and downstream of the β-adrenergic receptor(s).


2001 ◽  
Vol 280 (5) ◽  
pp. C1242-C1254 ◽  
Author(s):  
Ragnar Henningsson ◽  
Per Alm ◽  
Ingmar Lundquist

We investigated, by a combined in vivo and in vitro approach, the temporal changes of islet nitric oxide synthase (NOS)-derived nitric oxide (NO) and heme oxygenase (HO)-derived carbon monoxide (CO) production in relation to insulin and glucagon secretion during acute endotoxemia induced by lipopolysaccharide (LPS) in mice. Basal plasma glucagon, islet cAMP and cGMP content after in vitro incubation, the insulin response to glucose in vivo and in vitro, and the insulin and glucagon responses to the adenylate cyclase activator forskolin were greatly increased after LPS. Immunoblots demonstrated expression of inducible NOS (iNOS), inducible HO (HO-1), and an increased expression of constitutive HO (HO-2) in islet tissue. Immunocytochemistry revealed a marked expression of iNOS in many β-cells, but only in single α-cells after LPS. Moreover, biochemical analysis showed a time dependent and markedly increased production of NO and CO in these islets. Addition of a NOS inhibitor to such islets evoked a marked potentiation of glucose-stimulated insulin release. Finally, after incubation in vitro, a marked suppression of NO production by both exogenous CO and glucagon was observed in control islets. This effect occurred independently of a concomitant inhibition of guanylyl cyclase. We suggest that the impairing effect of increased production of islet NO on insulin secretion during acute endotoxemia is antagonized by increased activities of the islet cAMP and HO-CO systems, constituting important compensatory mechanisms against the noxious and diabetogenic actions of NO in endocrine pancreas.


1995 ◽  
Vol 73 (5) ◽  
pp. 665-669 ◽  
Author(s):  
W. Ross Tracey ◽  
Masaki Nakane ◽  
Fatima Basha ◽  
George Carter

Selective type II (inducible) nitric oxide synthase (NOS) inhibitors have several potential therapeutic applications, including treatment of sepsis, diabetes, and autoimmune diseases. The ability of two novel, selective inhibitors of type II NOS, S-ethylisothiourea (EIT) and 2-amino-5,6-dihydro-6-methyl-4H-1,3-thiazine (AMT), to inhibit type II NOS function in vivo was studied in lipopolysaccharide (LPS) treated rats. Type II NOS activity was assessed by measuring changes in plasma nitrite and nitrate concentrations ([NOx]). Both EIT and AMT elicited a dose-dependent and >95% inhibition of the LPS-induced increase in plasma [NOx]. The ED50 values for EIT and AMT were 0.4 and 0.2 mg/kg, respectively. In addition, the administration of LPS and either NOS inhibitor resulted in a dose-dependent increase in animal mortality; neither compound was lethal when administered alone. Pretreatment with L-arginine (but not D-arginine) prevented the mortality, while not affecting the type II NOS-dependent NO production, suggesting the toxicity may be due to inhibition of one of the other NOS isoforms (endothelial or neuronal). Thus, although EIT and AMT are potent inhibitors of type II NOS function in vivo, type II NOS inhibitors of even greater selectivity may need to be developed for therapeutic applications.Key words: nitric oxide, nitrite, nitrate, sepsis, lipopolysaccharide.


2006 ◽  
Vol 174 (3) ◽  
pp. 369-377 ◽  
Author(s):  
Carlos Fernández-Hernando ◽  
Masaki Fukata ◽  
Pascal N. Bernatchez ◽  
Yuko Fukata ◽  
Michelle I. Lin ◽  
...  

Lipid modifications mediate the subcellular localization and biological activity of many proteins, including endothelial nitric oxide synthase (eNOS). This enzyme resides on the cytoplasmic aspect of the Golgi apparatus and in caveolae and is dually acylated by both N-myristoylation and S-palmitoylation. Palmitoylation-deficient mutants of eNOS release less nitric oxide (NO). We identify enzymes that palmitoylate eNOS in vivo. Transfection of human embryonic kidney 293 cells with the complementary DNA (cDNA) for eNOS and 23 cDNA clones encoding the Asp-His-His-Cys motif (DHHC) palmitoyl transferase family members showed that five clones (2, 3, 7, 8, and 21) enhanced incorporation of [3H]-palmitate into eNOS. Human endothelial cells express all five of these enzymes, which colocalize with eNOS in the Golgi and plasma membrane and interact with eNOS. Importantly, inhibition of DHHC-21 palmitoyl transferase, but not DHHC-3, in human endothelial cells reduces eNOS palmitoylation, eNOS targeting, and stimulated NO production. Collectively, our data describe five new Golgi-targeted DHHC enzymes in human endothelial cells and suggest a regulatory role of DHHC-21 in governing eNOS localization and function.


1997 ◽  
Vol 272 (2) ◽  
pp. F178-F182 ◽  
Author(s):  
M. Wolzt ◽  
L. Schmetterer ◽  
W. Ferber ◽  
E. Artner ◽  
C. Mensik ◽  
...  

Animal experiments indicate that inhibition of nitric oxide synthase (NOS) influences renal hemodynamics and that this effect can be reversed by L-arginine, the precursor of NO synthesis. We have therefore studied the effects of an inhibitor of NOS, N(G)-monomethyl-L-arginine (L-NMMA), and a subsequent coinfusion with L-arginine on renal hemodynamics. In a double-blind, randomized crossover design, eight healthy volunteers (means +/- 1SD, 25.6 +/- 3.1 yr) received a primed constant infusion of L-NMMA (3 mg/kg bolus infusion over 5 min, followed by 50 microg x kg(-1) x min(-1) over 120 min) with subsequent coinfusion of L-arginine (17 mg x kg(-1) x min(-1) over 30 min). In the absence of a hypertensive response, L-NMMA decreased renal plasma flow to 79% of baseline (P < 0.005); this effect was abrogated by L-arginine. Glomerular filtration rate was not affected, NO exhalation was reduced to 30% of baseline (P < 0.005) by L-NMMA, and this effect was attenuated by L-arginine. Our results demonstrate that basal NO production maintains renal blood flow in vivo in humans. In addition, the renal vasculature is particularly sensitive to inhibition of NOS, and these pharmacodynamic effects can be reversed by excess doses of L-arginine.


Sign in / Sign up

Export Citation Format

Share Document