scholarly journals Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control

2004 ◽  
Vol 165 (1) ◽  
pp. 41-52 ◽  
Author(s):  
Shilpa Vashist ◽  
Davis T.W. Ng

Misfolded proteins retained in the endoplasmic reticulum (ER) are degraded by the ER-associated degradation pathway. The mechanisms used to sort them from correctly folded proteins remain unclear. Analysis of substrates with defined folded and misfolded domains has revealed a system of sequential checkpoints that recognize topologically distinct domains of polypeptides. The first checkpoint examines the cytoplasmic domains of membrane proteins. If a lesion is detected, it is retained statically in the ER and rapidly degraded without regard to the state of its other domains. Proteins passing this test face a second checkpoint that monitors domains localized in the ER lumen. Proteins detected by this pathway are sorted from folded proteins and degraded by a quality control mechanism that requires ER-to-Golgi transport. Although the first checkpoint is obligatorily directed at membrane proteins, the second monitors both soluble and membrane proteins. Our data support a model whereby “properly folded” proteins are defined biologically as survivors that endure a series of distinct checkpoints.

2015 ◽  
Vol 25 (3) ◽  
pp. 286-295 ◽  
Author(s):  
Deepika Vasudevan ◽  
Hideyuki Takeuchi ◽  
Sumreet Singh Johar ◽  
Elaine Majerus ◽  
Robert S. Haltiwanger

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3227-3227
Author(s):  
Mahmoud Yazdani-Abyaneh ◽  
W. Beau Mitchell

Abstract The αIIbβ3 integrin receptor mediates platelet aggregation, and individuals without functional αIIbβ3 manifest the mucocutaneous bleeding disorder Glanzmann thrombasthenia. Since platelets also participate in the pathophysiology of thrombosis, anti-αIIbβ3 agents have been successful in reducing mortality after percutaneous coronary interventions and from platelet-mediated coronary thrombosis. Accordingly, much research has focused on the structure, activation and signaling of the mature receptor on the cell surface. There is much to be gained medically and scientifically by understanding the intracellular processes by which integrins are assembled and expressed. Some forms of Glanzmann thrombasthenia result from mutations that disrupt normal integrin folding and assembly, causing the integrin subunits to be retained in the ER and degraded. These cases indicate the existence of a quality control mechanism for αIIbβ3 by which misfolded subunits are recognized, retained and degraded. Previous studies in HEK293 cells and murine megakaryocytes have identified the calnexin cycle as part of this quality control mechanism. We have expanded upon these findings and studied their functional implications by determining the effect of siRNA-induced knock down of proteins from six families of post-translational processing proteins on αIIbβ3 surface expression on human megakaryocyte-lineage cells derived from umbilical cord blood (UCB): lectins, glucosyltransferases, mannosidases, HSP90s, HSP70s, BiP, protein disulfide isomerases, and tetraspanins. We report that siRNA against two proteins in the calnexin cycle decreased surface expression of natively-folded αIIbβ3 on UCB-derived megakaryocytes as measured by binding of 10E5, an αIIbβ3 complex-dependent mAb. siRNA against UDP-glucose ceramide glucosyltransferase-like 1(UGGT, a glucosyltransferase) decreased binding by 36 +/− 9%, and siRNA against EDEM1 (a mannosidase) decreased binding by 15 +/− 14%, both p < 0.05. Additionally, siRNA against CD9 increased binding by 17 +/− 8%, p < 0.05, suggesting that CD9 may be a negative regulator of αIIbβ3 surface expression. UGGT is a glucosyltransferase protein and folding sensor of the calnexin cycle that recognizes and binds to glycoproteins that are in nearly-native folding conformations, but does not bind to fully folded glycoproteins. Glycoproteins that are glucosylated by UGGT may be bound by calnexin and retained in the ER, increasing their time for folding. Fully folded proteins cannot be reglucosylated by UGGT and escape the calnexin cycle, exiting the ER. EDEM1 is a mannosidase that interacts with calnexin to accept terminally misfolded proteins and direct them to degradation. Together, these data suggest a model in which the level of expression of native-folded αIIbβ3 on the cell surface is regulated in the ER by the calnexin cycle.


2016 ◽  
Vol 129 (19) ◽  
pp. 3635-3647 ◽  
Author(s):  
Tatyana Dubnikov ◽  
Tziona Ben-Gedalya ◽  
Robert Reiner ◽  
Dominic Hoepfner ◽  
Wayne A. Cabral ◽  
...  

2018 ◽  
Vol 29 (12) ◽  
pp. 1422-1434 ◽  
Author(s):  
Zhihao Sun ◽  
Jeffrey L. Brodsky

Protein homeostasis in the secretory pathway is maintained by a hierarchy of quality control checkpoints, including endoplasmic reticulum–associated degradation (ERAD), which leads to the destruction of misfolded proteins in the ER, as well as post-ER proteolysis. Although most aberrant proteins are degraded by ERAD, some misfolded proteins escape the ER and are degraded instead by lysosomal/vacuolar proteases. To date, it remains unclear how misfolded membrane proteins are selected for these different fates. Here we designed a novel model substrate, SZ*, to investigate how substrate selection is mediated in yeast. We discovered that SZ* is degraded by both the proteasome and vacuolar proteases, the latter of which occurs after ER exit and requires the multivesicular body pathway. By interrogating how various conditions affect the fate of SZ*, we also discovered that heat-shock and substrate overexpression increase ERAD targeting. These conditions also increase substrate aggregation. We next found that aggregation of the membrane-free misfolded domain in SZ* is concentration dependent, and fusion of this misfolded domain to a post-ER quality control substrate instead targets the substrate for ERAD. Our data indicate that a misfolded membrane protein with a higher aggregation propensity is preferentially retained in the ER and targeted for ERAD.


1999 ◽  
Vol 145 (6) ◽  
pp. 1165-1175 ◽  
Author(s):  
Chenhui Wen ◽  
Iva Greenwald

Mutations in the Caenorhabditis elegans sel-9 gene elevate the activity of lin-12 and glp-1, which encode members of the LIN-12/NOTCH family of receptors. Sequence analysis indicates SEL-9 is one of several C. elegans p24 proteins. Allele-specific genetic interactions suggest that reducing sel-9 activity increases the activity of mutations altering the extracellular domains of LIN-12 or GLP-1. Reducing sel-9 activity restores the trafficking to the plasma membrane of a mutant GLP-1 protein that would otherwise accumulate within the cell. Our results suggest a role for SEL-9 and other p24 proteins in the negative regulation of transport of LIN-12 and GLP-1 to the cell surface, and favor a role for p24 proteins in a quality control mechanism for endoplasmic reticulum–Golgi transport.


Cell Reports ◽  
2020 ◽  
Vol 33 (13) ◽  
pp. 108568
Author(s):  
Xichan Hu ◽  
Jin-Kwang Kim ◽  
Clinton Yu ◽  
Hyun-Ik Jun ◽  
Jinqiang Liu ◽  
...  

2016 ◽  
Vol 213 (6) ◽  
pp. 693-704 ◽  
Author(s):  
Natalia Sikorska ◽  
Leticia Lemus ◽  
Auxiliadora Aguilera-Romero ◽  
Javier Manzano-Lopez ◽  
Howard Riezman ◽  
...  

Endoplasmic reticulum (ER) quality control mechanisms target terminally misfolded proteins for ER-associated degradation (ERAD). Misfolded glycophosphatidylinositol-anchored proteins (GPI-APs) are, however, generally poor ERAD substrates and are targeted mainly to the vacuole/lysosome for degradation, leading to predictions that a GPI anchor sterically obstructs ERAD. Here we analyzed the degradation of the misfolded GPI-AP Gas1* in yeast. We could efficiently route Gas1* to Hrd1-dependent ERAD and provide evidence that it contains a GPI anchor, ruling out that a GPI anchor obstructs ERAD. Instead, we show that the normally decreased susceptibility of Gas1* to ERAD is caused by canonical remodeling of its GPI anchor, which occurs in all GPI-APs and provides a protein-independent ER export signal. Thus, GPI anchor remodeling is independent of protein folding and leads to efficient ER export of even misfolded species. Our data imply that ER quality control is limited for the entire class of GPI-APs, many of them being clinically relevant.


Sign in / Sign up

Export Citation Format

Share Document