scholarly journals The mammalian Scribble polarity protein regulates epithelial cell adhesion and migration through E-cadherin

2005 ◽  
Vol 171 (6) ◽  
pp. 1061-1071 ◽  
Author(s):  
Yi Qin ◽  
Christopher Capaldo ◽  
Barry M. Gumbiner ◽  
Ian G. Macara

Scribble (Scrib) is a conserved polarity protein required in Drosophila melanogaster for synaptic function, neuroblast differentiation, and epithelial polarization. It is also a tumor suppressor. In rodents, Scrib has been implicated in receptor recycling and planar polarity but not in apical/basal polarity. We now show that knockdown of Scrib disrupts adhesion between Madin–Darby canine kidney epithelial cells. As a consequence, the cells acquire a mesenchymal appearance, migrate more rapidly, and lose directionality. Although tight junction assembly is delayed, confluent monolayers remain polarized. These effects are independent of Rac activation or Scrib binding to βPIX. Rather, Scrib depletion disrupts E-cadherin–mediated cell–cell adhesion. The changes in morphology and migration are phenocopied by E-cadherin knockdown. Adhesion is partially rescued by expression of an E-cadherin–α-catenin fusion protein but not by E-cadherin–green fluorescent protein. These results suggest that Scrib stabilizes the coupling between E-cadherin and the catenins and are consistent with the idea that mammalian Scrib could behave as a tumor suppressor by regulating epithelial cell adhesion and migration.

1988 ◽  
Vol 7 (3) ◽  
pp. 293-301 ◽  
Author(s):  
J. D. Cameron ◽  
S. T. Hagen ◽  
R. R. Waterfield ◽  
L. T. Furcht

2015 ◽  
Vol 309 (6) ◽  
pp. C437-C441 ◽  
Author(s):  
Sona Lakshme Balasubramaniam ◽  
Anilkumar Gopalakrishnapillai ◽  
Sonali P. Barwe

2001 ◽  
Vol 12 (4) ◽  
pp. 847-862 ◽  
Author(s):  
Nasreen Akhtar ◽  
Neil A. Hotchin

The establishment of cadherin-dependent cell–cell contacts in human epidermal keratinocytes are known to be regulated by the Rac1 small GTP-binding protein, although the mechanisms by which Rac1 participates in the assembly or disruption of cell–cell adhesion are not well understood. In this study we utilized green fluorescent protein (GFP)-tagged Rac1 expression vectors to examine the subcellular distribution of Rac1 and its effects on E-cadherin–mediated cell–cell adhesion. Microinjection of keratinocytes with constitutively active Rac1 resulted in cell spreading and disruption of cell–cell contacts. The ability of Rac1 to disrupt cell–cell adhesion was dependent on colony size, with large established colonies being resistant to the effects of active Rac1. Disruption of cell–cell contacts in small preconfluent colonies was achieved through the selective recruitment of E-cadherin–catenin complexes to the perimeter of multiple large intracellular vesicles, which were bounded by GFP-tagged L61Rac1. Similar vesicles were observed in noninjected keratinocytes when cell–cell adhesion was disrupted by removal of extracellular calcium or with the use of an E-cadherin blocking antibody. Moreover, formation of these structures in noninjected keratinocytes was dependent on endogenous Rac1 activity. Expression of GFP-tagged effector mutants of Rac1 in keratinocytes demonstrated that reorganization of the actin cytoskeleton was important for vesicle formation. Characterization of these Rac1-induced vesicles revealed that they were endosomal in nature and tightly colocalized with the transferrin receptor, a marker for recycling endosomes. Expression of GFP-L61Rac1 inhibited uptake of transferrin-biotin, suggesting that the endocytosis of E-cadherin was a clathrin-independent mechanism. This was supported by the observation that caveolin, but not clathrin, localized around these structures. Furthermore, an inhibitory form of dynamin, known to inhibit internalization of caveolae, inhibited formation of cadherin vesicles. Our data suggest that Rac1 regulates adherens junctions via clathrin independent endocytosis of E-cadherin.


2011 ◽  
Vol 192 (3) ◽  
pp. 369-369
Author(s):  
Ben Short

The tumor suppressor functions outside the nucleus to regulate cell adhesion and migration.


Oncogene ◽  
2002 ◽  
Vol 21 (55) ◽  
pp. 8470-8476 ◽  
Author(s):  
Aristotelis Astrinidis ◽  
Timothy P Cash ◽  
Deborah S Hunter ◽  
Cheryl L Walker ◽  
Jonathan Chernoff ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document