scholarly journals The Drosophila melanogaster Cajal body

2006 ◽  
Vol 172 (6) ◽  
pp. 875-884 ◽  
Author(s):  
Ji-Long Liu ◽  
Christine Murphy ◽  
Michael Buszczak ◽  
Sarah Clatterbuck ◽  
Robyn Goodman ◽  
...  

Cajal bodies (CBs) are nuclear organelles that are usually identified by the marker protein p80-coilin. Because no orthologue of coilin is known in Drosophila melanogaster, we identified D. melanogaster CBs using probes for other components that are relatively diagnostic for CBs in vertebrate cells. U85 small CB–specific RNA, U2 small nuclear RNA, the survival of motor neurons protein, and fibrillarin occur together in a nuclear body that is closely associated with the nucleolus. Based on its similarity to CBs in other organisms, we refer to this structure as the D. melanogaster CB. Surprisingly, the D. melanogaster U7 small nuclear RNP resides in a separate nuclear body, which we call the histone locus body (HLB). The HLB is invariably colocalized with the histone gene locus. Thus, canonical CB components are distributed into at least two nuclear bodies in D. melanogaster. The identification of these nuclear bodies now permits a broad range of questions to be asked about CB structure and function in a genetically tractable organism.

2009 ◽  
Vol 20 (6) ◽  
pp. 1661-1670 ◽  
Author(s):  
Ji-Long Liu ◽  
Zheng'an Wu ◽  
Zehra Nizami ◽  
Svetlana Deryusheva ◽  
T.K. Rajendra ◽  
...  

Cajal bodies (CBs) are nuclear organelles that occur in a variety of organisms, including vertebrates, insects, and plants. They are most often identified with antibodies against the marker protein coilin. Because the amino acid sequence of coilin is not strongly conserved evolutionarily, coilin orthologues have been difficult to recognize by homology search. Here, we report the identification of Drosophila melanogaster coilin and describe its distribution in tissues of the fly. Surprisingly, we found coilin not only in CBs but also in histone locus bodies (HLBs), calling into question the use of coilin as an exclusive marker for CBs. We analyzed two null mutants in the coilin gene and a piggyBac insertion mutant, which leads to specific loss of coilin from the germline. All three mutants are homozygous viable and fertile. Cells that lack coilin also lack distinct foci of other CB markers, including fibrillarin, the survival motor neuron (SMN) protein, U2 small nuclear RNA (snRNA), U5 snRNA, and the small CB-specific (sca) RNA U85. However, HLBs are not obviously affected in coilin-null flies. Thus, coilin is required for normal CB organization in Drosophila but is not essential for viability or production of functional gametes.


2010 ◽  
Vol 38 (4) ◽  
pp. 1099-1104 ◽  
Author(s):  
Elizabeth A. Dunn ◽  
Stephen D. Rader

U6 snRNA (small nuclear RNA), one of five RNA molecules that are required for the essential process of pre-mRNA splicing, is notable for its high level of sequence conservation and the important role it is thought to play in the splicing reaction. Nevertheless, the secondary structure of U6 in the free snRNP (small nuclear ribonucleoprotein) form has remained elusive, with predictions changing substantially over the years. In the present review we discuss the evidence for existing models and critically evaluate a fundamental assumption of these models, namely whether the important 3′ ISL (3′ internal stem–loop) is present in the free U6 particle, as well as in the active splicing complex. We compare existing models of free U6 with a newly proposed model lacking the 3′ ISL and evaluate the implications of the new model for the structure and function of U6's base-pairing partner U4 snRNA. Intriguingly, the new model predicts a role for U4 that was unanticipated previously, namely as an activator of U6 for assembly into the splicing machinery.


2010 ◽  
Vol 190 (4) ◽  
pp. 603-612 ◽  
Author(s):  
Tatsuya Suzuki ◽  
Hiroto Izumi ◽  
Mutsuhito Ohno

Phosphorylated adaptor for RNA export (PHAX) is the key export mediator for spliceosomal U small nuclear RNA (snRNA) precursors in metazoa. PHAX is enriched in Cajal bodies (CBs), nuclear subdomains involved in the biogenesis of small ribonucleoproteins. However, CBs’ role in U snRNA export has not been demonstrated. In this study, we show that U snRNA precursors microinjected into Xenopus laevis oocyte nuclei temporarily concentrate in CBs but gradually decrease as RNA export proceeds. Inhibition of PHAX activity by the coinjection of a specific anti-PHAX antibody or a dominant-negative PHAX mutant inhibits U snRNA export and simultaneously enhances accumulation of U snRNA precursors in CBs, indicating that U snRNAs transit through CBs before export and that binding to PHAX is required for efficient exit of U snRNAs from CBs. Similar results were obtained with U snRNAs transcribed from microinjected genes. These results reveal a novel function for CBs, which ensure that U snRNA precursors are properly bound by PHAX.


2019 ◽  
Author(s):  
Woonyung Hur ◽  
Marco Tarzia ◽  
Victoria E. Deneke ◽  
Esteban A. Terzo ◽  
Robert J. Duronio ◽  
...  

SummaryMany membrane-less organelles form through liquid-liquid phase separation, but how their size is controlled and whether size is linked to function remain poorly understood. The Histone Locus Body (HLB) is an evolutionarily conserved nuclear body that regulates the transcription and processing of histone mRNAs. Here, we show that Drosophila HLBs form through phase separation of the scaffold protein multi-sex combs (Mxc). The size of HLBs is controlled in a precise and dynamic manner that is dependent on the cell cycle and zygotic gene activation. Control of HLB growth is achieved by a mechanism integrating nascent mRNAs at the histone locus, which catalyzes phase separation, and the nuclear concentration of Mxc, which is controlled by the activity of cyclin-dependent kinases. Reduced Cdk2 activity results in smaller HLBs and the appearance of nascent, misprocessed histone mRNAs. Our experiments thus identify a mechanism linking nuclear body growth and size with gene expression.


2020 ◽  
Author(s):  
Takashi Imada ◽  
Takeshi Shimi ◽  
Ai Kaiho ◽  
Yasushi Saeki ◽  
Hiroshi Kimura

ABSTRACTIn eukaryotic nuclei, a number of phase-separated nuclear bodies (NBs) are present. RNA polymerase II (Pol II) is the main player in transcription and forms large condensates in addition to localizing at numerous transcription foci. Cajal bodies (CBs) and histone locus bodies (HLBs) are NBs that are involved in transcriptional and post-transcriptional regulation of small nuclear RNA and histone genes. By live-cell imaging using human HCT116 cells, we here show that Pol II condensates (PCs) nucleated near CBs and HLBs, and the number of PCs increased during S phase concomitantly with the activation period of histone genes. Ternary PC–CB– HLB associates were formed via three pathways: nucleation of PCs and HLBs near CBs, interaction between preformed PC–HLBs with CBs, and nucleation of PCs near preformed CB– HLBs. Coilin knockout increased the co-localization rate between PCs and HLBs, whereas the number, nucleation timing, and phosphorylation status of PCs remained unchanged. Depletion of PCs did not affect CBs and HLBs. Treatment with 1,6-hexanediol revealed that PCs were more liquid-like than CBs and HLBs. Thus, PCs are dynamic structures often nucleated following the activation of gene clusters associated with other NBs. (187 words)


2007 ◽  
Vol 282 (38) ◽  
pp. 27953-27959 ◽  
Author(s):  
Daniel J. Battle ◽  
Mumtaz Kasim ◽  
Jin Wang ◽  
Gideon Dreyfuss

The survival of motor neurons (SMN) complex is essential for the biogenesis of small nuclear ribonucleoprotein (snRNP) complexes in eukaryotic cells. Reduced levels of SMN cause the motor neuron degenerative disease, spinal muscular atrophy. We identify here stable subunits of the SMN complex that do not contain SMN. Sedimentation and immunoprecipitation experiments using cell extracts reveal at least three complexes composed of Gemin3, -4, and -5; Gemin6, -7, and unrip; and SMN with Gemin2, as well as free Gemin5. Complexes containing Gemin3-Gemin4-Gemin5 and Gemin6-Gemin7-unrip persist at similar levels when SMN is reduced. In cells, immunofluorescence microscopy shows differential localization of Gemin5 after cell stress. We further show that the Gemin5-containing subunits bind small nuclear RNA independently of the SMN complex and without a requirement for exogenous ATP. ATP hydrolysis is, however, required for displacement of small nuclear RNAs from the Gemin5-containing subunits and their assembly into snRNPs. These findings demonstrate a modular nature of the SMN complex and identify a new intermediate in the snRNP assembly process.


2007 ◽  
Vol 179 (3) ◽  
pp. 451-465 ◽  
Author(s):  
Sebastian Petri ◽  
Matthias Grimmler ◽  
Sabine Over ◽  
Utz Fischer ◽  
Oliver J. Gruss

The survival motor neuron (SMN) complex functions in maturation of uridine-rich small nuclear ribonucleoprotein (RNP) particles. SMN mediates the cytoplasmic assembly of Sm proteins onto uridine-rich small RNAs, and then participates in targeting RNPs to nuclear Cajal bodies (CBs). Recent studies have suggested that phosphorylation might control localization and function of the SMN complex. Here, we show that the nuclear phosphatase PPM1G/PP2Cγ interacts with and dephosphorylates the SMN complex. Small interfering RNA knockdown of PPM1G leads to an altered phosphorylation pattern of SMN and Gemin3, loss of SMN from CBs, and reduced stability of SMN. Accumulation in CBs is restored upon overexpression of catalytically active, but not that of inactive, PPM1G. This demonstrates that PPM1G's phosphatase activity is necessary to maintain SMN subcellular distribution. Concomitant knockdown of unr interacting protein (unrip), a component implicated in cytoplasmic retention of the SMN complex, also rescues the localization defects. Our data suggest that an interplay between PPM1G and unrip determine compartment-specific phosphorylation patterns, localization, and function of the SMN complex.


Sign in / Sign up

Export Citation Format

Share Document