histone locus bodies
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 8)

H-INDEX

5
(FIVE YEARS 2)

2021 ◽  
pp. jcs.251728
Author(s):  
Jennifer Michelle Potter-Birriel ◽  
Graydon B. Gonsalvez ◽  
William F. Marzluff

Replication-dependent histone mRNAs are the only cellular mRNAs that are not polyadenylated, ending in a stemloop instead of a polyA tail, and are normally regulated coordinately with DNA replication. SLBP binds the 3’ end of histone mRNA, and is required for processing and translation. During Drosophila oogenesis, large amounts of histone mRNAs and proteins are deposited in the developing oocyte.The maternally deposited histone mRNA is synthesized in stage 10B oocytes after the nurse cells complete endoreduplication. We report that in WT stage 10B oocytes, the Histone Locus Bodies (HLBs), formed on the histone genes, produce histone mRNAs in the absence of phosphorylation of Mxc, normally required for histone gene expression in S-phase cells. Two mutants of SLBP, one with reduced expression and another with a 10 aa deletion, fail to deposit sufficient histone mRNA in the oocyte, and don't transcribe the histone genes in stage 10B. Mutations in a putative SLBP nuclear localization sequence overlapping the deletion, phenocopy the deletion. We conclude a high concentration of SLBP in the nucleus of stage 10B oocytes is essential for histone gene transcription.


2020 ◽  
Author(s):  
Takashi Imada ◽  
Takeshi Shimi ◽  
Ai Kaiho ◽  
Yasushi Saeki ◽  
Hiroshi Kimura

ABSTRACTIn eukaryotic nuclei, a number of phase-separated nuclear bodies (NBs) are present. RNA polymerase II (Pol II) is the main player in transcription and forms large condensates in addition to localizing at numerous transcription foci. Cajal bodies (CBs) and histone locus bodies (HLBs) are NBs that are involved in transcriptional and post-transcriptional regulation of small nuclear RNA and histone genes. By live-cell imaging using human HCT116 cells, we here show that Pol II condensates (PCs) nucleated near CBs and HLBs, and the number of PCs increased during S phase concomitantly with the activation period of histone genes. Ternary PC–CB– HLB associates were formed via three pathways: nucleation of PCs and HLBs near CBs, interaction between preformed PC–HLBs with CBs, and nucleation of PCs near preformed CB– HLBs. Coilin knockout increased the co-localization rate between PCs and HLBs, whereas the number, nucleation timing, and phosphorylation status of PCs remained unchanged. Depletion of PCs did not affect CBs and HLBs. Treatment with 1,6-hexanediol revealed that PCs were more liquid-like than CBs and HLBs. Thus, PCs are dynamic structures often nucleated following the activation of gene clusters associated with other NBs. (187 words)


2020 ◽  
Vol 54 (3) ◽  
pp. 379-394.e6 ◽  
Author(s):  
Woonyung Hur ◽  
James P. Kemp ◽  
Marco Tarzia ◽  
Victoria E. Deneke ◽  
William F. Marzluff ◽  
...  

2020 ◽  
Author(s):  
Jennifer Potter-Birriel ◽  
Graydon B. Gonsalvez ◽  
William F. Marzluff

ABSTRACTDuring Drosophila oogenesis, large amounts of histone mRNA and proteins are deposited in the developing oocyte. These are sufficient for the first 14 embryonic cell cycles and provide the developing embryo with sufficient histone proteins until the zygotic histone genes are activated. The maternally deposited histone mRNA is synthesized in stage 10b of oogenesis after completion of endoreduplication of the nurse cells. Histone mRNAs are the only cellular mRNAs that are not polyadenylated, ending instead in a conserved stemloop instead of a polyA tail. The Stem-loop binding protein (SLBP) binds the 3’ end of histone mRNA and is essential for both the biosynthesis and translation of histone mRNA. We report that a 10 aa region in SLBP, which is not required for processing in vitro, is essential for transcription of histone mRNA in the stage 10b oocyte. In stage 10b the Histone Locus Bodies (HLBs) produce histone mRNAs in the absence of phosphorylation of Mxc, normally required for histone gene expression in S-phase cells. Mutants expressing this SLBP develop normally, produce small amounts of polyadenylated histone mRNA throughout development, but little histone mRNA in stage 10b resulting in death of the embryos in the first hr of development.


2020 ◽  
Vol 21 (5) ◽  
pp. 1586 ◽  
Author(s):  
Masanori Kurihara ◽  
Kouyou Komatsu ◽  
Rie Awane ◽  
Yoshihiro H. Inoue

Mutations in the multi sex combs (mxc) gene in Drosophila results in malignant hyperplasia in larval hematopoietic tissues, called lymph glands (LG). mxc encodes a component of the histone locus body (HLB) that is essential for cell cycle-dependent transcription and processing of histone mRNAs. The mammalian nuclear protein ataxia-telangiectasia (NPAT) gene, encoded by the responsible gene for ataxia telangiectasia, is a functional Mxc orthologue. However, their roles in tumorigenesis are unclear. Genetic analyses of the mxc mutants and larvae having LG-specific depletion revealed that a reduced activity of the gene resulted in the hyperplasia, which is caused by hyper-proliferation of immature LG cells. The depletion of mxc in mature hemocytes of the LG resulted in the hyperplasia. Furthermore, the inhibition of HLB formation was required for LG hyperplasia. In the mutant larvae, the total mRNA levels of the five canonical histones decreased, and abnormal forms of polyadenylated histone mRNAs, detected rarely in normal larvae, were generated. The ectopic expression of the polyadenylated mRNAs was sufficient for the reproduction of the hyperplasia. The loss of HLB function, especially 3′-end processing of histone mRNAs, is critical for malignant LG hyperplasia in this leukemia model in Drosophila. We propose that mxc is involved in the activation to induce adenosine deaminase-related growth factor A (Adgf-A), which suppresses immature cell proliferation in LG.


2019 ◽  
Author(s):  
Netha Ulahannan ◽  
Matthew Pendleton ◽  
Aditya Deshpande ◽  
Stefan Schwenk ◽  
Julie M. Behr ◽  
...  

AbstractHigher-order chromatin structure arises from the combinatorial physical interactions of many genomic loci. To investigate this aspect of genome architecture we developed Pore-C, which couples chromatin conformation capture with Oxford Nanopore Technologies (ONT) long reads to directly sequence multi-way chromatin contacts without amplification. In GM12878, we demonstrate that the pairwise interaction patterns implicit in Pore-C multi-way contacts are consistent with gold standard Hi-C pairwise contact maps at the compartment, TAD, and loop scales. In addition, Pore-C also detects higher-order chromatin structure at 18.5-fold higher efficiency and greater fidelity than SPRITE, a previously published higher-order chromatin profiling technology. We demonstrate Pore-C’s ability to detect and visualize multi-locus hubs associated with histone locus bodies and active / inactive nuclear compartments in GM12878. In the breast cancer cell line HCC1954, Pore-C contacts enable the reconstruction of complex and aneuploid rearranged alleles spanning multiple megabases and chromosomes. Finally, we apply Pore-C to generate a chromosome scalede novoassembly of the HG002 genome. Our results establish Pore-C as the most simple and scalable assay for the genome-wide assessment of combinatorial chromatin interactions, with additional applications for cancer rearrangement reconstruction andde novogenome assembly.


2019 ◽  
Author(s):  
Woonyung Hur ◽  
Marco Tarzia ◽  
Victoria E. Deneke ◽  
Esteban A. Terzo ◽  
Robert J. Duronio ◽  
...  

SummaryMany membrane-less organelles form through liquid-liquid phase separation, but how their size is controlled and whether size is linked to function remain poorly understood. The Histone Locus Body (HLB) is an evolutionarily conserved nuclear body that regulates the transcription and processing of histone mRNAs. Here, we show that Drosophila HLBs form through phase separation of the scaffold protein multi-sex combs (Mxc). The size of HLBs is controlled in a precise and dynamic manner that is dependent on the cell cycle and zygotic gene activation. Control of HLB growth is achieved by a mechanism integrating nascent mRNAs at the histone locus, which catalyzes phase separation, and the nuclear concentration of Mxc, which is controlled by the activity of cyclin-dependent kinases. Reduced Cdk2 activity results in smaller HLBs and the appearance of nascent, misprocessed histone mRNAs. Our experiments thus identify a mechanism linking nuclear body growth and size with gene expression.


2017 ◽  
Author(s):  
Todd R. Albrecht ◽  
Sergey P. Shevtsov ◽  
Lauren G. Mascibroda ◽  
Natoya J. Peart ◽  
Iain A. Sawyer ◽  
...  

AbstractIntegrator (INT) is a transcriptional regulatory complex associated with RNA polymerase II that is required for the 3’-end processing of both UsnRNAs and enhancer RNAs. Integrator subunits 9 (INTS9) and INTS11 constitute the catalytic core of INT and are paralogues of the cleavage and polyadenylation specificity factors CPSF100 and CPSF73. While CPSF73/100 are known to associate with a third protein called Symplekin, there is no paralog of Symplekin within INT raising the question of how INTS9/11 associate with the other INT subunits. Here, we have identified that INTS4 is a specific and conserved interaction partner of INTS9/11 that does not interact with either subunit individually. Although INTS4 has no significant homology with Symplekin, it possesses N-terminal HEAT repeats similar to Symplekin but also contains a β-sheet rich C-terminal region, both of which are important to bind INTS9/11. We assess three functions of INT including UsnRNA 3’-end processing, maintenance of Cajal body integrity, and formation of histone locus bodies to conclude that INTS4/9/11 are the most critical of the INT subunits for UsnRNA biogenesis. Altogether, these results indicate that INTS4/9/11 compose a heterotrimeric complex that likely represents the Integrator ‘cleavage module’ responsible for its endonucleolytic activity.


2016 ◽  
Vol 6 (12) ◽  
pp. 3849-3857 ◽  
Author(s):  
Dhananjay Chaturvedi ◽  
Mayu Inaba ◽  
Shane Scoggin ◽  
Michael Buszczak

Abstract Conserved from yeast to humans, the Paf1 complex participates in a number of diverse processes including transcriptional initiation and polyadenylation. This complex typically includes five proteins: Paf1, Rtf1, Cdc73, Leo1, and Ctr9. Previous efforts identified clear Drosophila homologs of Paf1, Rtf1, and Cdc73 based on sequence similarity. Further work showed that these proteins help to regulate gene expression and are required for viability. To date, a Drosophila homolog of Ctr9 has remained uncharacterized. Here, we show that the gene CG2469 encodes a functional Drosophila Ctr9 homolog. Both human and Drosophila Ctr9 localize to the nuclei of Drosophila cells and appear enriched in histone locus bodies. RNAi knockdown of Drosophila Ctr9 results in a germline stem cell loss phenotype marked by defects in the morphology of germ cell nuclei. A molecular null mutation of Drosophila Ctr9 results in lethality and a human cDNA CTR9 transgene rescues this phenotype. Clonal analysis in the ovary using this null allele reveals that loss of Drosophila Ctr9 results in a reduction of global levels of histone H3 trimethylation of lysine 4 (H3K4me3), but does not compromise the maintenance of stem cells in ovaries. Given the differences between the null mutant and RNAi knockdown phenotypes, the germ cell defects caused by RNAi likely result from the combined loss of Drosophila Ctr9 and other unidentified genes. These data provide further evidence that the function of this Paf1 complex component is conserved across species.


Sign in / Sign up

Export Citation Format

Share Document