zygotic gene activation
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 7)

H-INDEX

14
(FIVE YEARS 1)

PLoS Genetics ◽  
2021 ◽  
Vol 17 (7) ◽  
pp. e1009650
Author(s):  
Amanda L. Fry ◽  
Amy K. Webster ◽  
Julia Burnett ◽  
Rojin Chitrakar ◽  
L. Ryan Baugh ◽  
...  

Quiescence, an actively-maintained reversible state of cell cycle arrest, is not well understood. PTEN is one of the most frequently lost tumor suppressors in human cancers and regulates quiescence of stem cells and cancer cells. The sole PTEN ortholog in Caenorhabditis elegans is daf-18. In a C. elegans loss-of-function mutant for daf-18, primordial germ cells (PGCs) divide inappropriately in L1 larvae hatched into starvation conditions, in a TOR-dependent manner. Here, we further investigated the role of daf-18 in maintaining PGC quiescence in L1 starvation. We found that maternal or zygotic daf-18 is sufficient to maintain cell cycle quiescence, that daf-18 acts in the germ line and soma, and that daf-18 affects timing of PGC divisions in fed animals. Importantly, our results also implicate daf-18 in repression of germline zygotic gene activation, though not in germline fate specification. However, TOR is less important to germline zygotic gene expression, suggesting that in the absence of food, daf-18/PTEN prevents inappropriate germline zygotic gene activation and cell division by distinct mechanisms.


2021 ◽  
Author(s):  
Hongdao Zhang ◽  
Fengjuan Zhang ◽  
Jinghua Chen ◽  
Mingzhi Li ◽  
Xiaolong Lv ◽  
...  

AbstractPiwi-interacting RNAs (piRNAs) are small RNAs predominantly expressed in germ cells that are critical for gametogenesis in various species. However, PIWI-deficient female mice are fertile and mouse oocytes express a panel of small RNAs that do not appear widely representative of mammals, and piRNA function in the oogenesis of other mammals has therefore remained elusive. Recent studies revealed the small RNA andPIWItranscriptional profiles in golden hamster oocytes more closely resemble that of humans than mice. Herein, we generatedPIWIL1-,PLD6-andMOV10L1-deficient golden hamsters and found that all female mutants were sterile, with embryos arrested at the two-cell stage. InPIWIL1mutant oocytes, we observed transposon accumulation and broad transcriptomic dysregulation, while zygotic gene activation was impaired in early embryos. Intriguingly, PIWIL1-piRNAs exhibited a unique, preferential silencing of endogenous retroviruses (ERVs), whereas silencing LINE1s depended on both PIWIL1- and PIWIL3-piRNAs. Moreover, we showed that piRNAs participate in the degradation of maternal mRNAs in MII oocytes and embryos via partially complementary targets. Together, our findings demonstrate that piRNAs are indispensable for generating functional oocytes in golden hamster, and show the informative value of this model for functional and mechanistic investigations of piRNAs, especially those related to female infertility.


2020 ◽  
Author(s):  
Amanda L. Fry ◽  
Amy Webster ◽  
Rojin Chitrakar ◽  
L. Ryan Baugh ◽  
E. Jane Albert Hubbard

AbstractQuiescence, an actively-maintained reversible state of cell cycle arrest, is not well understood. PTEN is one of the most frequently lost tumor suppressors in human cancers and regulates quiescence of stem cells and cancer cells. In C. elegans mutant for daf-18, the sole C. elegans PTEN ortholog, primordial germ cells (PGCs) divide inappropriately in starvation conditions, in a TOR-dependent manner. Here, we further investigated the role of daf-18 in maintaining PGC quiescence. We found that maternal or zygotic daf-18 is sufficient to maintain cell cycle quiescence, that daf-18 acts in the germ line and soma, and that daf-18 affects timing of PGC divisions in fed animals. Importantly, our results also implicate daf-18 in zygotic germline gene activation, though not in germline fate specification. However, TOR is less important to zygotic germline gene expression, suggesting that in the absence of food daf-18/PTEN prevents inappropriate germline zygotic gene activation and cell division by distinct mechanisms.


2020 ◽  
Vol 21 (11) ◽  
pp. 4115 ◽  
Author(s):  
Isabel Gómez-Redondo ◽  
Priscila Ramos-Ibeas ◽  
Eva Pericuesta ◽  
Raúl Fernández-González ◽  
Ricardo Laguna-Barraza ◽  
...  

Minor splicing plays an important role in vertebrate development. Zrsr1 and Zrsr2 paralog genes have essential roles in alternative splicing, mainly participating in the recognition of minor (U12) introns. To further explore their roles during early embryo development, we produced Zrsr1mu and Zrsr2mu mutant mice, containing truncating mutations within the second zinc finger domain. Both homozygous mutant mice were viable with a normal lifespan. When we crossed a homozygous Zrsr2mu/mu female with Zrsr1mu/mu male, the double heterozygotes were non-viable, giving rise to embryos that stopped developing mainly between the 2- and 4-cell stages, just after zygotic gene activation. RNA-seq analysis of Zrsr1/2mu 2-cell embryos showed altered gene and isoform expression of thousands of genes enriched in gene ontology terms and biological pathways related to ribosome, RNA transport, spliceosome, and essential zygotic gene activation steps. Alternative splicing was analyzed, showing a significant increase in intron retention in both U2 and U12 intron-containing genes related to cell cycle and mitotic nuclear division. Remarkably, both Zrsr1 and Zrsr2 were required for the conversion of mouse-induced pluripotent stem cells into 2C-like cells. According to our results, Zrsr1 or Zrsr2 are necessary for ZGA and both are indispensable for the conversion of induced pluripotent stem cells into 2C-like cells.


2019 ◽  
Author(s):  
Woonyung Hur ◽  
Marco Tarzia ◽  
Victoria E. Deneke ◽  
Esteban A. Terzo ◽  
Robert J. Duronio ◽  
...  

SummaryMany membrane-less organelles form through liquid-liquid phase separation, but how their size is controlled and whether size is linked to function remain poorly understood. The Histone Locus Body (HLB) is an evolutionarily conserved nuclear body that regulates the transcription and processing of histone mRNAs. Here, we show that Drosophila HLBs form through phase separation of the scaffold protein multi-sex combs (Mxc). The size of HLBs is controlled in a precise and dynamic manner that is dependent on the cell cycle and zygotic gene activation. Control of HLB growth is achieved by a mechanism integrating nascent mRNAs at the histone locus, which catalyzes phase separation, and the nuclear concentration of Mxc, which is controlled by the activity of cyclin-dependent kinases. Reduced Cdk2 activity results in smaller HLBs and the appearance of nascent, misprocessed histone mRNAs. Our experiments thus identify a mechanism linking nuclear body growth and size with gene expression.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Young Sun Hwang ◽  
Minseok Seo ◽  
Sang Kyung Kim ◽  
Sohyun Bang ◽  
Heebal Kim ◽  
...  

The first wave of transcriptional activation occurs after fertilisation in a species-specific pattern. Despite its importance to initial embryonic development, the characteristics of transcription following fertilisation are poorly understood in Aves. Here, we report detailed insights into the onset of genome activation in chickens. We established that two waves of transcriptional activation occurred, one shortly after fertilisation and another at Eyal-Giladi and Kochav Stage V. We found 1544 single nucleotide polymorphisms across 424 transcripts derived from parents that were expressed in offspring during the early embryonic stages. Surprisingly, only the maternal genome was activated in the zygote, and the paternal genome remained silent until the second-wave, regardless of the presence of a paternal pronucleus or supernumerary sperm in the egg. The identified maternal genes involved in cleavage that were replaced by bi-allelic expression. The results demonstrate that only maternal alleles are activated in the chicken zygote upon fertilisation, which could be essential for early embryogenesis and evolutionary outcomes in birds.


2018 ◽  
Author(s):  
Young Sun Hwang ◽  
Minseok Seo ◽  
Sang Kyung Kim ◽  
Sohyun Bang ◽  
Heebal Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document