scholarly journals Mitochondrial protein import: precursor oxidation in a ternary complex with disulfide carrier and sulfhydryl oxidase

2008 ◽  
Vol 183 (2) ◽  
pp. 195-202 ◽  
Author(s):  
Diana Stojanovski ◽  
Dusanka Milenkovic ◽  
Judith M. Müller ◽  
Kipros Gabriel ◽  
Agnes Schulze-Specking ◽  
...  

The biogenesis of mitochondrial intermembrane space proteins depends on specific machinery that transfers disulfide bonds to precursor proteins. The machinery shares features with protein relays for disulfide bond formation in the bacterial periplasm and endoplasmic reticulum. A disulfide-generating enzyme/sulfhydryl oxidase oxidizes a disulfide carrier protein, which in turn transfers a disulfide to the substrate protein. Current views suggest that the disulfide carrier alternates between binding to the oxidase and the substrate. We have analyzed the cooperation of the disulfide relay components during import of precursors into mitochondria and identified a ternary complex of all three components. The ternary complex represents a transient and intermediate step in the oxidation of intermembrane space precursors, where the oxidase Erv1 promotes disulfide transfer to the precursor while both oxidase and precursor are associated with the disulfide carrier Mia40.

2013 ◽  
Vol 24 (5) ◽  
pp. 543-554 ◽  
Author(s):  
Lidia Wrobel ◽  
Agata Trojanowska ◽  
Malgorzata E. Sztolsztener ◽  
Agnieszka Chacinska

The mitochondrial intermembrane space assembly (MIA) pathway is generally considered to be dedicated to the redox-dependent import and biogenesis of proteins localized to the intermembrane space of mitochondria. The oxidoreductase Mia40 is a central component of the pathway responsible for the transfer of disulfide bonds to intermembrane space precursor proteins, causing their oxidative folding. Here we present the first evidence that the function of Mia40 is not restricted to the transport and oxidative folding of intermembrane space proteins. We identify Tim22, a multispanning membrane protein and core component of the TIM22 translocase of inner membrane, as a protein with cysteine residues undergoing oxidation during Tim22 biogenesis. We show that Mia40 is involved in the biogenesis and complex assembly of Tim22. Tim22 forms a disulfide-bonded intermediate with Mia40 upon import into mitochondria. Of interest, Mia40 binds the Tim22 precursor also via noncovalent interactions. We propose that Mia40 not only is responsible for disulfide bond formation, but also assists the Tim22 protein in its integration into the inner membrane of mitochondria.


Author(s):  
Gino L. Turra ◽  
Linda Liedgens ◽  
Frederik Sommer ◽  
Luzia Schneider ◽  
David Zimmer ◽  
...  

The discovery of the redox proteins Mia40/CHCHD4 and Erv1/ALR, as well as the elucidation of their relevance for oxidative protein folding in the mitochondrial intermembrane space of yeast and mammals, founded a new research topic in redox biology and mitochondrial protein import. The lack of Mia40/CHCHD4 in protist lineages raises fundamental and controversial questions regarding the conservation and evolution of this essential pathway.


2016 ◽  
Vol 214 (4) ◽  
pp. 417-431 ◽  
Author(s):  
Ajay Ramesh ◽  
Valentina Peleh ◽  
Sonia Martinez-Caballero ◽  
Florian Wollweber ◽  
Frederik Sommer ◽  
...  

Tim17 is a central, membrane-embedded subunit of the mitochondrial protein import machinery. In this study, we show that Tim17 contains a pair of highly conserved cysteine residues that form a structural disulfide bond exposed to the intermembrane space (IMS). This disulfide bond is critical for efficient protein translocation through the TIM23 complex and for dynamic gating of its preprotein-conducting channel. The disulfide bond in Tim17 is formed during insertion of the protein into the inner membrane. Whereas the import of Tim17 depends on the binding to the IMS protein Mia40, the oxidoreductase activity of Mia40 is surprisingly dispensable for Tim17 oxidation. Our observations suggest that Tim17 can be directly oxidized by the sulfhydryl oxidase Erv1. Thus, import and oxidation of Tim17 are mediated by the mitochondrial disulfide relay, though the mechanism by which the disulfide bond in Tim17 is formed differs considerably from that of soluble IMS proteins.


2009 ◽  
Vol 20 (3) ◽  
pp. 769-779 ◽  
Author(s):  
Michael J. Baker ◽  
Chaille T. Webb ◽  
David A. Stroud ◽  
Catherine S. Palmer ◽  
Ann E. Frazier ◽  
...  

The Tim9–Tim10 complex plays an essential role in mitochondrial protein import by chaperoning select hydrophobic precursor proteins across the intermembrane space. How the complex interacts with precursors is not clear, although it has been proposed that Tim10 acts in substrate recognition, whereas Tim9 acts in complex stabilization. In this study, we report the structure of the yeast Tim9–Tim10 hexameric assembly determined to 2.5 Å and have performed mutational analysis in yeast to evaluate the specific roles of Tim9 and Tim10. Like the human counterparts, each Tim9 and Tim10 subunit contains a central loop flanked by disulfide bonds that separate two extended N- and C-terminal tentacle-like helices. Buried salt-bridges between highly conserved lysine and glutamate residues connect alternating subunits. Mutation of these residues destabilizes the complex, causes defective import of precursor substrates, and results in yeast growth defects. Truncation analysis revealed that in the absence of the N-terminal region of Tim9, the hexameric complex is no longer able to efficiently trap incoming substrates even though contacts with Tim10 are still made. We conclude that Tim9 plays an important functional role that includes facilitating the initial steps in translocating precursor substrates into the intermembrane space.


2016 ◽  
Vol 397 (11) ◽  
pp. 1097-1114 ◽  
Author(s):  
Sebastian P. Straub ◽  
Sebastian B. Stiller ◽  
Nils Wiedemann ◽  
Nikolaus Pfanner

Abstract Mitochondria contain elaborate machineries for the import of precursor proteins from the cytosol. The translocase of the outer mitochondrial membrane (TOM) performs the initial import of precursor proteins and transfers the precursors to downstream translocases, including the presequence translocase and the carrier translocase of the inner membrane, the mitochondrial import and assembly machinery of the intermembrane space, and the sorting and assembly machinery of the outer membrane. Although the protein translocases can function as separate entities in vitro, recent studies revealed a close and dynamic cooperation of the protein import machineries to facilitate efficient transfer of precursor proteins in vivo. In addition, protein translocases were found to transiently interact with distinct machineries that function in the respiratory chain or in the maintenance of mitochondrial membrane architecture. Mitochondrial protein import is embedded in a regulatory network that ensures protein biogenesis, membrane dynamics, bioenergetic activity and quality control.


2020 ◽  
Vol 401 (6-7) ◽  
pp. 663-676 ◽  
Author(s):  
André Schneider

AbstractThe evolution of mitochondrial protein import and the systems that mediate it marks the boundary between the endosymbiotic ancestor of mitochondria and a true organelle that is under the control of the nucleus. Protein import has been studied in great detail in Saccharomyces cerevisiae. More recently, it has also been extensively investigated in the parasitic protozoan Trypanosoma brucei, making it arguably the second best studied system. A comparative analysis of the protein import complexes of yeast and trypanosomes is provided. Together with data from other systems, this allows to reconstruct the ancestral features of import complexes that were present in the last eukaryotic common ancestor (LECA) and to identify which subunits were added later in evolution. How these data can be translated into plausible scenarios is discussed, providing insights into the evolution of (i) outer membrane protein import receptors, (ii) proteins involved in biogenesis of α-helically anchored outer membrane proteins, and (iii) of the intermembrane space import and assembly system. Finally, it is shown that the unusual presequence-associated import motor of trypanosomes suggests a scenario of how the two ancestral inner membrane protein translocases present in LECA evolved into the single bifunctional one found in extant trypanosomes.


2019 ◽  
Vol 116 (33) ◽  
pp. 16593-16602 ◽  
Author(s):  
Svitlana Yablonska ◽  
Vinitha Ganesan ◽  
Lisa M. Ferrando ◽  
JinHo Kim ◽  
Anna Pyzel ◽  
...  

Mutant huntingtin (mHTT), the causative protein in Huntington’s disease (HD), associates with the translocase of mitochondrial inner membrane 23 (TIM23) complex, resulting in inhibition of synaptic mitochondrial protein import first detected in presymptomatic HD mice. The early timing of this event suggests that it is a relevant and direct pathophysiologic consequence of mHTT expression. We show that, of the 4 TIM23 complex proteins, mHTT specifically binds to the TIM23 subunit and that full-length wild-type huntingtin (wtHTT) and mHTT reside in the mitochondrial intermembrane space. We investigated differences in mitochondrial proteome between wtHTT and mHTT cells and found numerous proteomic disparities between mHTT and wtHTT mitochondria. We validated these data by quantitative immunoblotting in striatal cell lines and human HD brain tissue. The level of soluble matrix mitochondrial proteins imported through the TIM23 complex is lower in mHTT-expressing cell lines and brain tissues of HD patients compared with controls. In mHTT-expressing cell lines, membrane-bound TIM23-imported proteins have lower intramitochondrial levels, whereas inner membrane multispan proteins that are imported via the TIM22 pathway and proteins integrated into the outer membrane generally remain unchanged. In summary, we show that, in mitochondria, huntingtin is located in the intermembrane space, that mHTT binds with high-affinity to TIM23, and that mitochondria from mHTT-expressing cells and brain tissues of HD patients have reduced levels of nuclearly encoded proteins imported through TIM23. These data demonstrate the mechanism and biological significance of mHTT-mediated inhibition of mitochondrial protein import, a mechanism likely broadly relevant to other neurodegenerative diseases.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Valentina Peleh ◽  
Emmanuelle Cordat ◽  
Johannes M Herrmann

Many proteins of the mitochondrial IMS contain conserved cysteines that are oxidized to disulfide bonds during their import. The conserved IMS protein Mia40 is essential for the oxidation and import of these proteins. Mia40 consists of two functional elements: an N-terminal cysteine-proline-cysteine motif conferring substrate oxidation, and a C-terminal hydrophobic pocket for substrate binding. In this study, we generated yeast mutants to dissect both Mia40 activities genetically and biochemically. Thereby we show that the substrate-binding domain of Mia40 is both necessary and sufficient to promote protein import, indicating that trapping by Mia40 drives protein translocation. An oxidase-deficient Mia40 mutant is inviable, but can be partially rescued by the addition of the chemical oxidant diamide. Our results indicate that Mia40 predominantly serves as a trans-site receptor of mitochondria that binds incoming proteins via hydrophobic interactions thereby mediating protein translocation across the outer membrane by a ‘holding trap’ rather than a ‘folding trap’ mechanism.


2009 ◽  
Vol 185 (6) ◽  
pp. 1029-1045 ◽  
Author(s):  
Yasushi Tamura ◽  
Toshiya Endo ◽  
Miho Iijima ◽  
Hiromi Sesaki

Cardiolipin, a unique phospholipid composed of four fatty acid chains, is located mainly in the mitochondrial inner membrane (IM). Cardiolipin is required for the integrity of several protein complexes in the IM, including the TIM23 translocase, a dynamic complex which mediates protein import into the mitochondria through interactions with the import motor presequence translocase–associated motor (PAM). In this study, we report that two homologous intermembrane space proteins, Ups1p and Ups2p, control cardiolipin metabolism and affect the assembly state of TIM23 and its association with PAM in an opposing manner. In ups1Δ mitochondria, cardiolipin levels were decreased, and the TIM23 translocase showed altered conformation and decreased association with PAM, leading to defects in mitochondrial protein import. Strikingly, loss of Ups2p restored normal cardiolipin levels and rescued TIM23 defects in ups1Δ mitochondria. Furthermore, we observed synthetic growth defects in ups mutants in combination with loss of Pam17p, which controls the integrity of PAM. Our findings provide a novel molecular mechanism for the regulation of cardiolipin metabolism.


2004 ◽  
Vol 279 (44) ◽  
pp. 45701-45707 ◽  
Author(s):  
Masatoshi Esaki ◽  
Hidaka Shimizu ◽  
Tomoko Ono ◽  
Hayashi Yamamoto ◽  
Takashi Kanamori ◽  
...  

Protein translocation across the outer mitochondrial membrane is mediated by the translocator called the TOM (translocase of the outer mitochondrial membrane) complex. The TOM complex possesses two presequence binding sites on the cytosolic side (thecissite) and on the intermembrane space side (thetranssite). Here we analyzed the requirement of presequence elements and subunits of the TOM complex for presequence binding to thecisandtranssites of the TOM complex. The N-terminal 14 residues of the presequence of subunit 9 of F0-ATPase are required for binding to thetranssite. The interaction between the presequence and thecissite is not sufficient to anchor the precursor protein to the TOM complex. Tom7 constitutes or is close to thetranssite and has overlapping functions with the C-terminal intermembrane space domain of Tom22 in the mitochondrial protein import.


Sign in / Sign up

Export Citation Format

Share Document