scholarly journals Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity

2009 ◽  
Vol 184 (3) ◽  
pp. 373-381 ◽  
Author(s):  
Thomas J. Maresca ◽  
Edward D. Salmon

Cells have evolved a signaling pathway called the spindle assembly checkpoint (SAC) to increase the fidelity of chromosome segregation by generating a “wait anaphase” signal until all chromosomes are properly aligned within the mitotic spindle. It has been proposed that tension generated by the stretch of the centromeric chromatin of bioriented chromosomes stabilizes kinetochore microtubule attachments and turns off SAC activity. Although biorientation clearly causes stretching of the centromeric chromatin, it is unclear whether the kinetochore is also stretched. To test whether intrakinetochore stretch occurs and is involved in SAC regulation, we developed a Drosophila melanogaster S2 cell line expressing centromere identifier–mCherry and Ndc80–green fluorescent protein to mark the inner and outer kinetochore domains, respectively. We observed stretching within kinetochores of bioriented chromosomes by monitoring both inter- and intrakinetochore distances in live cell assays. This intrakinetochore stretch is largely independent of a 30-fold variation in centromere stretch. Furthermore, loss of intrakinetochore stretch is associated with enhancement of 3F3/2 phosphorylation and SAC activation.

2018 ◽  
Author(s):  
Spyridon T. Pachis ◽  
Yoshitaka Hiruma ◽  
Anastassis Perrakis ◽  
Geert J.P.L. Kops

ABSTRACTFaithful chromosome segregation relies on the ability of the spindle assembly checkpoint (SAC) to delay anaphase onset until all chromosomes are attached to the mitotic spindle via their kinetochores. MPS1 kinase is recruited to unattached kinetochores to initiate SAC signaling, and is removed from kinetochores once stable microtubule attachments have been formed to allow normal mitotic progression. Here we show that a helical fragment within the kinetochore-targeting NTE module of MPS1 is required for interactions with kinetochores, and also forms intramolecular interactions with its adjacent TPR domain. Bypassing this NTE-TPR interaction results in high MPS1 levels at kinetochores due to loss of regulatory input into MPS1 localization, ineffecient MPS1 delocalization from kinetochores upon microtubule attachment, and SAC silencing defects. These results show that SAC responsiveness to attachments relies on regulated intramolecular interactions in MPS1 and highlight the sensitivity of mitosis to perturbations in the dynamics of the MSP1-NDC80-C interactions.


2002 ◽  
Vol 22 (21) ◽  
pp. 7553-7561 ◽  
Author(s):  
Danielle Vermaak ◽  
Hillary S. Hayden ◽  
Steven Henikoff

ABSTRACT Centromeres require specialized nucleosomes; however, the mechanism of localization is unknown. Drosophila sp. centromeric nucleosomes contain the Cid H3-like protein. We have devised a strategy for identifying elements within Cid responsible for its localization to centromeres. By expressing Cid from divergent Drosophila species fused to green fluorescent protein in Drosophila melanogaster cells, we found that D. bipectinata Cid fails to localize to centromeres. Cid chimeras consisting of the D. bipectinata histone fold domain (HFD) replaced with segments from D. melanogaster identified loop I of the HFD as being critical for targeting to centromeres. Conversely, substitution of D. bipectinata loop I into D. melanogaster abolished centromeric targeting. In either case, loop I was the only segment capable of conferring targeting. Within loop I, we identified residues that are critical for targeting. Most mutations of conserved residues abolished targeting, and length reductions were deleterious. Taken together with the fact that H3 loop I makes numerous contacts with DNA and with the adaptive evolution of Cid, our results point to the importance of DNA specificity for targeting. We suggest that the process of deposition of (Cid.H4)2 tetramers allows for discriminating contacts to be made between loop I and DNA, providing the specificity needed for targeting.


2004 ◽  
Vol 279 (44) ◽  
pp. 46182-46190 ◽  
Author(s):  
Sefat-e- Khuda ◽  
Mikoto Yoshida ◽  
Yan Xing ◽  
Tatsuya Shimasaki ◽  
Motohiro Takeya ◽  
...  

SaccharomycesSac3 required for actin assembly was shown to be involved in DNA replication. Here, we studied the function of a mammalian homologue SHD1 in cell cycle progression. SHD1 is localized on centrosomes at interphase and at spindle poles and mitotic spindles, similar to α-tubulin, at M phase. RNA interference suppression of endogenousshd1caused defects in centrosome duplication and spindle formation displaying cells with a single apparent centrosome and down-regulated Mad2 expression, generating increased micronuclei. Conversely, increased expression of SHD1 by DNA transfection withshd1-green fluorescent protein (gfp) vector for a fusion protein of SHD1 and GFP caused abnormalities in centrosome duplication displaying cells with multiple centrosomes and deregulated spindle assembly with up-regulated Mad2 expression until anaphase, generating polyploidy cells. These results demonstrated thatshd1is involved in cell cycle progression, in particular centrosome duplication and a spindle assembly checkpoint function.


2003 ◽  
Vol 14 (5) ◽  
pp. 2192-2200 ◽  
Author(s):  
Yulia Ovechkina ◽  
Paul Maddox ◽  
C. Elizabeth Oakley ◽  
Xin Xiang ◽  
Stephen A. Osmani ◽  
...  

In many important organisms, including many algae and most fungi, the nuclear envelope does not disassemble during mitosis. This fact raises the possibility that mitotic onset and/or exit might be regulated, in part, by movement of important mitotic proteins into and out of the nucleoplasm. We have used two methods to determine whether tubulin levels in the nucleoplasm are regulated in the fungus Aspergillus nidulans. First, we have used benomyl to disassemble microtubules and create a pool of free tubulin that can be readily observed by immunofluorescence. We find that tubulin is substantially excluded from interphase nuclei, but is present in mitotic nuclei. Second, we have observed a green fluorescent protein/α-tubulin fusion in living cells by time-lapse spinning-disk confocal microscopy. We find that tubulin is excluded from interphase nuclei, enters the nucleus seconds before the mitotic spindle begins to form, and is removed from the nucleoplasm during the M-to-G1transition. Our data indicate that regulation of intranuclear tubulin levels plays an important, perhaps essential, role in the control of mitotic spindle formation in A. nidulans. They suggest that regulation of protein movement into the nucleoplasm may be important for regulating mitotic onset in organisms with intranuclear mitosis.


2020 ◽  
Author(s):  
Debashish U. Menon ◽  
Terry Magnuson

AbstractBRG1, a catalytic subunit of the mammalian SWI/SNF nucleosome remodeler is essential for male meiosis1. In addition to BRG1, multiple subunits (~10-14) some of which are mutually exclusive, constitute biochemically distinct SWI/SNF subcomplexes, whose functions in gametogenesis remain unknown. Here, we identify a role for the PBAF (Polybromo - Brg1 Associated Factor) complex in the regulation of meiotic cell division. The germ cell-specific depletion of PBAF specific subunit, ARID2 resulted in a metaphase-I arrest. Arid2cKO metaphase-I spermatocytes displayed defects in chromosome organization and spindle assembly. Additionally, mutant centromeres were devoid of Polo-like kinase1 (PLK1), a known regulator of the spindle assembly checkpoint (SAC)2. The loss of PLK1 coincided with an abnormal chromosome-wide expansion of centromeric chromatin modifications such as Histone H3 threonine3 phosphorylation (H3T3P) and Histone H2A threonine120 phosphorylation (H2AT120P) that are critical for chromosome segregation3,4. Consistent with the known role of these histone modifications in chromosome passenger complex (CPC) recruitment, Arid2cKO metaphase-I chromosomes display defects in CPC association. We propose that ARID2 facilitates metaphase-I exit by regulating spindle assembly and centromeric chromatin.


Gene ◽  
1996 ◽  
Vol 173 (1) ◽  
pp. 83-87 ◽  
Author(s):  
Jeffrey D. Plautz ◽  
Richard N. Day ◽  
Gina M. Dailey ◽  
Stephen B. Welsh ◽  
Jeffrey C. Hall ◽  
...  

2017 ◽  
Vol 216 (11) ◽  
pp. 3591-3608 ◽  
Author(s):  
Silvia Salas-Pino ◽  
Paola Gallardo ◽  
Ramón R. Barrales ◽  
Sigurd Braun ◽  
Rafael R. Daga

Kinetochores (KTs) are large multiprotein complexes that constitute the interface between centromeric chromatin and the mitotic spindle during chromosome segregation. In spite of their essential role, little is known about how centromeres and KTs are assembled and how their precise stoichiometry is regulated. In this study, we show that the nuclear pore basket component Alm1 is required to maintain both the proteasome and its anchor, Cut8, at the nuclear envelope, which in turn regulates proteostasis of certain inner KT components. Consistently, alm1-deleted cells show increased levels of KT proteins, including CENP-CCnp3, spindle assembly checkpoint activation, and chromosome segregation defects. Our data demonstrate a novel function of the nucleoporin Alm1 in proteasome localization required for KT homeostasis.


Sign in / Sign up

Export Citation Format

Share Document