regulatory input
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 11)

H-INDEX

13
(FIVE YEARS 0)

2022 ◽  
Vol 15 ◽  
Author(s):  
Amber Penning ◽  
Giorgia Tosoni ◽  
Oihane Abiega ◽  
Pascal Bielefeld ◽  
Caterina Gasperini ◽  
...  

The adult neurogenic niches are complex multicellular systems, receiving regulatory input from a multitude of intracellular, juxtacrine, and paracrine signals and biological pathways. Within the niches, adult neural stem cells (aNSCs) generate astrocytic and neuronal progeny, with the latter predominating in physiological conditions. The new neurons generated from this neurogenic process are functionally linked to memory, cognition, and mood regulation, while much less is known about the functional contribution of aNSC-derived newborn astrocytes and adult-born oligodendrocytes. Accumulating evidence suggests that the deregulation of aNSCs and their progeny can impact, or can be impacted by, aging and several brain pathologies, including neurodevelopmental and mood disorders, neurodegenerative diseases, and also by insults, such as epileptic seizures, stroke, or traumatic brain injury. Hence, understanding the regulatory underpinnings of aNSC activation, differentiation, and fate commitment could help identify novel therapeutic avenues for a series of pathological conditions. Over the last two decades, small non-coding RNAs (sncRNAs) have emerged as key regulators of NSC fate determination in the adult neurogenic niches. In this review, we synthesize prior knowledge on how sncRNAs, such as microRNAs (miRNAs) and piwi-interacting RNAs (piRNAs), may impact NSC fate determination in the adult brain and we critically assess the functional significance of these events. We discuss the concepts that emerge from these examples and how they could be used to provide a framework for considering aNSC (de)regulation in the pathogenesis and treatment of neurological diseases.


2021 ◽  
Author(s):  
Hannah J. Gustafson ◽  
Nikolas Claussen ◽  
Stefano De Renzis ◽  
Sebastian J. Streichan

Morphogenesis, the coordinated execution of developmental programs that shape embryos, raises many fundamental questions at the interface between physics and biology. In particular, how the dynamics of active cytoskeletal processes are coordinated across the surface of entire embryos to generate global cell flows is poorly understood. Two distinct regulatory principles have been identified: genetic programs and dynamic response to mechanical stimuli. Despite progress, disentangling these two contributions remains challenging. Here, we combine in toto light sheet microscopy with genetic and optogenetic perturbations of tissue mechanics to examine theoretically predicted dynamic recruitment of non-muscle myosin II to cell junctions during Drosophila embryogenesis. We find dynamic recruitment has a long-range impact on global myosin configuration, and the rate of junction deformation sets the rate of myosin recruitment. Mathematical modeling and high frequency analysis reveal myosin fluctuations on junctions around a mean value set by mechanical feedback. Our model accounts for the early establishment of the global myosin pattern at 80% fidelity. Taken together our results indicate spatially modulated mechanical feedback as a key regulatory input in the establishment of long-range gradients of cytoskeletal configurations and global tissue flow patterns.


2021 ◽  
Author(s):  
Luana Nunes Santos ◽  
Angela Costa ◽  
Martin Nikolov ◽  
Allysson Coelho Sampaio ◽  
Frank Stockdale ◽  
...  

Optimal cardiac function requires appropriate contractile proteins in each heart chamber. Atria require slow myosins to act as variable reservoirs, while ventricles demand fast myosin for swift pumping functions. Hence, myosin is under chamber-biased cis-regulatory control to achieve this functional distribution. Failure in proper regulation of myosin genes can lead to severe congenital heart dysfunction. The precise regulatory input leading to cardiac chamber-biased expression remains uncharted. To address this, we computationally and molecularly dissected the quail Slow Myosin Heavy Chain III (SMyHC III) promoter that drives specific gene expression to the atria to uncover the regulatory information leading to chamber expression and understand their evolutionary origins. We show that SMyHC III gene states are autonomously orchestrated by a complex nuclear receptor cis-regulatory element (cNRE), a 32-bp sequence with hexanucleotide binding repeats. Using in vivo transgenic assays in zebrafish and mouse models, we demonstrate that preferential atrial expression is achieved by the combinatorial regulatory input composed of atrial activation motifs and ventricular repression motifs. Through comparative genomics, we provide evidence that the cNRE emerged from an endogenous viral element, most likely through infection of an ancestral host germline. Our study reveals an evolutionary pathway to cardiac chamber-specific expression.


2021 ◽  
Vol 55 (4) ◽  
pp. 143-164
Author(s):  
Gerald McDonnell ◽  
Hal Baseman ◽  
Lena Cordie-Bancroft

Abstract In the design, control, and regulation of the manufacturing and supply of microbiologically controlled devices (including sterile devices) and drug products (including cleaning, disinfection, and sterilization processing and/or aseptic process manufacturing), different terms and/or definitions are often used for similar processes or applications internationally. With product innovations (including combination products and cell-based therapy) and global regulatory influences, there is a growing need to harmonize these definitions. The objective of the Kilmer Regulatory Innovation microbiological quality and sterility assurance glossary is to clarify and harmonize the practical use of terms employed by the different parts of regulated healthcare product industries internationally and by regulators of the manufacturing and supply of microbiologically controlled healthcare products internationally. The glossary is expected to continue to evolve, and further industry, academic, and regulatory input is encouraged.


2021 ◽  
Vol 17 (7) ◽  
pp. e1009697
Author(s):  
Duygu Demiroz ◽  
Ekaterini Platanitis ◽  
Michael Bryant ◽  
Philipp Fischer ◽  
Michaela Prchal-Murphy ◽  
...  

Listeria monocytogenes (L. monocytogenes) is a food-borne bacterial pathogen. Innate immunity to L. monocytogenes is profoundly affected by type I interferons (IFN-I). Here we investigated host metabolism in L. monocytogenes-infected mice and its potential control by IFN-I. Accordingly, we used animals lacking either the IFN-I receptor (IFNAR) or IRF9, a subunit of ISGF3, the master regulator of IFN-I-induced genes. Transcriptomes and metabolite profiles showed that L. monocytogenes infection induces metabolic rewiring of the liver. This affects various metabolic pathways including fatty acid (FA) metabolism and oxidative phosphorylation and is partially dependent on IFN-I signaling. Livers and macrophages from Ifnar1-/- mice employ increased glutaminolysis in an IRF9-independent manner, possibly to readjust TCA metabolite levels due to reduced FA oxidation. Moreover, FA oxidation inhibition provides protection from L. monocytogenes infection, explaining part of the protection of Irf9-/- and Ifnar1-/- mice. Our findings define a role of IFN-I in metabolic regulation during L. monocytogenes infection. Metabolic differences between Irf9-/- and Ifnar1-/- mice may underlie the different susceptibility of these mice against lethal infection with L. monocytogenes.


2021 ◽  
Vol 118 (26) ◽  
pp. e2021483118
Author(s):  
Anran Li ◽  
Bethany K. Okada ◽  
Paul C. Rosen ◽  
Mohammad R. Seyedsayamdost

Natural products have been an important source of therapeutic agents and chemical tools. The recent realization that many natural product biosynthetic genes are silent or sparingly expressed during standard laboratory growth has prompted efforts to investigate their regulation and develop methods to induce their expression. Because it is difficult to intuit signals that induce a given biosynthetic locus, we recently implemented a forward chemical-genetic approach to identify such inducers. In the current work, we applied this approach to nine silent biosynthetic loci in the model bacterium Burkholderia thailandensis to systematically screen for elicitors from a library of Food and Drug Administration–approved drugs. We find that β-lactams, fluoroquinolones, antifungals, and, surprisingly, calcimimetics, phenothiazine antipsychotics, and polyaromatic antidepressants are the most effective global inducers of biosynthetic genes. Investigations into the mechanism of stimulation of the silent virulence factor malleicyprol by the β-lactam piperacillin allowed us to elucidate the underlying regulatory circuits. Low-dose piperacillin causes oxidative stress, thereby inducing redox-sensing transcriptional regulators, which activate malR, a pathway-specific positive regulator of the malleicyprol gene cluster. Malleicyprol is thus part of the OxyR and SoxR regulons in B. thailandensis, allowing the bacterium to initiate virulence in response to oxidative stress. Our work catalogs a diverse array of elicitors and a previously unknown regulatory input for secondary metabolism in B. thailandensis.


2021 ◽  
Author(s):  
Sarah Belhocine ◽  
Andre Machado Xavier ◽  
Félix Distéfano-Gagné ◽  
Stéphanie Fiola ◽  
Serge Rivest ◽  
...  

SummaryMicroglia proliferation occurs during brain development and brain lesions, but how this is coordinated at the transcriptional level is not well understood. Here, we investigated transcriptional mechanisms underlying proliferation of mouse microglia during postnatal development and in adults in models of induced microglial depletion-repopulation and brain demyelination. While each proliferative subset displayed globally a distinct signature of gene expression, they also co-expressed a subgroup of 1,370 genes at higher levels than quiescent microglia. Furthermore, expression of these may be coordinated by one of two modes of regulation. A first mode augments expression of genes already expressed in quiescent microglia and is subject to regulation by Klf/Sp, Nfy, and Ets transcription factors. Alternatively, a second mode enables de novo transcription of cell cycle genes and requires additional regulatory input from Lin54 and E2f factors. Overall, proliferating microglia integrate regulation of cell cycle gene expression with their broader, context-dependent, transcriptional landscape.


Bioanalysis ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 415-463
Author(s):  
Bart Corsaro ◽  
Tong-yuan Yang ◽  
Rocio Murphy ◽  
Ivo Sonderegger ◽  
Andrew Exley ◽  
...  

The 14th edition of the Workshop on Recent Issues in Bioanalysis (14th WRIB) was held virtually on June 15-29, 2020 with an attendance of over 1000 representatives from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations, and regulatory agencies worldwide. The 14th WRIB included three Main Workshops, seven Specialized Workshops that together spanned 11 days in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy and vaccine. Moreover, a comprehensive vaccine assays track; an enhanced cytometry track and updated Industry/Regulators consensus on BMV of biotherapeutics by LCMS were special features in 2020. As in previous years, this year's WRIB continued to gather a wide diversity of international industry opinion leaders and regulatory authority experts working on both small and large molecules to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance and achieving scientific excellence on bioanalytical issues. This 2020 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the Global Bioanalytical Community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2020 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 3) covers the recommendations on Vaccine, Gene/Cell Therapy, NAb Harmonization and Immunogenicity). Part 1 (Innovation in Small Molecules, Hybrid LBA/LCMS & Regulated Bioanalysis), Part 2A (BAV, PK LBA, Flow Cytometry Validation and Cytometry Innovation) and Part 2B (Regulatory Input) are published in volume 13 of Bioanalysis, issues 4 and 5 (2020), respectively.


Bioanalysis ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 203-238
Author(s):  
Hendrik Neubert ◽  
Stephen C Alley ◽  
Anita Lee ◽  
Wenying Jian ◽  
Michael Buonarati ◽  
...  

The 14th edition of the Workshop on Recent Issues in Bioanalysis (14th WRIB) was held virtually on June 15–29, 2020 with an attendance of over 1000 representatives from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations, and regulatory agencies worldwide. The 14th WRIB included three Main Workshops, seven Specialized Workshops that together spanned 11 days in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccine. Moreover, a comprehensive vaccine assays track; an enhanced cytometry track and updated Industry/Regulators consensus on BMV of biotherapeutics by Mass Spectrometry (hybrid assays, LCMS and HRMS) were special features in 2020. As in previous years, this year's WRIB continued to gather a wide diversity of international industry opinion leaders and regulatory authority experts working on both small and large molecules to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance and achieving scientific excellence on bioanalytical issues. This 2020 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the Global Bioanalytical Community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2020 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication covers the recommendations on (Part 1) Hybrid Assays, Innovation in Small Molecules, & Regulated Bioanalysis. Part 2A (BAV, PK LBA, Flow Cytometry Validation and Cytometry Innovation), Part 2B (Regulatory Input) and Part 3 (Vaccine, Gene/Cell Therapy, NAb Harmonization and Immunogenicity) are published in volume 13 of Bioanalysis, issues 5, and 6 (2021), respectively.


Bioanalysis ◽  
2021 ◽  
Author(s):  
Susan Spitz ◽  
Yan Zhang ◽  
Sally Fischer ◽  
Kristina McGuire ◽  
Ulrike Sommer ◽  
...  

The 14th edition of the Workshop on Recent Issues in Bioanalysis (14th WRIB) was held virtually on June 15-29, 2020 with an attendance of over 1000 representatives from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations, and regulatory agencies worldwide. The 14th WRIB included three Main Workshops, seven Specialized Workshops that together spanned 11 days in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy and vaccine. Moreover, a comprehensive vaccine assays track; an enhanced cytometry track and updated Industry/Regulators consensus on BMV of biotherapeutics by LCMS were special features in 2020. As in previous years, this year's WRIB continued to gather a wide diversity of international industry opinion leaders and regulatory authority experts working on both small and large molecules to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance and achieving scientific excellence on bioanalytical issues. This 2020 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the Global Bioanalytical Community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2020 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication covers the recommendations on (Part 2A) BAV, PK LBA, Flow Cytometry Validation and Cytometry Innovation and (Part 2B) Regulatory Input. Part 1 (Innovation in Small Molecules, Hybrid LBA/LCMS & Regulated Bioanalysis), Part 3 (Vaccine, Gene/Cell Therapy, NAb Harmonization and Immunogenicity) are published in volume 13 of Bioanalysis, issues 4, and 6 (2021), respectively.


Sign in / Sign up

Export Citation Format

Share Document