scholarly journals Phosphorylated Rad18 directs DNA Polymerase η to sites of stalled replication

2010 ◽  
Vol 191 (5) ◽  
pp. 953-966 ◽  
Author(s):  
Tovah A. Day ◽  
Komariah Palle ◽  
Laura R. Barkley ◽  
Naoko Kakusho ◽  
Ying Zou ◽  
...  

The E3 ubiquitin ligase Rad18 guides DNA Polymerase eta (Polη) to sites of replication fork stalling and mono-ubiquitinates proliferating cell nuclear antigen (PCNA) to facilitate binding of Y family trans-lesion synthesis (TLS) DNA polymerases during TLS. However, it is unclear exactly how Rad18 is regulated in response to DNA damage and how Rad18 activity is coordinated with progression through different phases of the cell cycle. Here we identify Rad18 as a novel substrate of the essential protein kinase Cdc7 (also termed Dbf4/Drf1-dependent Cdc7 kinase [DDK]). A serine cluster in the Polη-binding motif of Rad18 is phosphorylated by DDK. Efficient association of Rad18 with Polη is dependent on DDK and is necessary for redistribution of Polη to sites of replication fork stalling. This is the first demonstration of Rad18 regulation by direct phosphorylation and provides a novel mechanism for integration of S phase progression with postreplication DNA repair to maintain genome stability.

2010 ◽  
Vol 2010 ◽  
pp. 1-13 ◽  
Author(s):  
Sayo Kashiwagi ◽  
Isao Kuraoka ◽  
Yoshie Fujiwara ◽  
Kenichi Hitomi ◽  
Quen J. Cheng ◽  
...  

Human DNA polymeraseη(HsPolη) plays an important role in translesion synthesis (TLS), which allows for replication past DNA damage such as UV-inducedcis-syncyclobutane pyrimidine dimers (CPDs). Here, we characterized ApPolηfrom the thermophilic wormAlvinella pompejana, which inhabits deep-sea hydrothermal vent chimneys. ApPolηshares sequence homology with HsPolηand contains domains for binding ubiquitin and proliferating cell nuclear antigen. Sun-induced UV does not penetrateAlvinella'senvironment; however, this novel DNA polymerase catalyzed efficient and accurate TLS past CPD, as well as 7,8-dihydro-8-oxoguanine and isomers of thymine glycol induced by reactive oxygen species. In addition, we found that ApPolηis more thermostable than HsPolη, as expected from its habitat temperature. Moreover, the activity of this enzyme was retained in the presence of a higher concentration of organic solvents. Therefore, ApPolηprovides a robust, human-like Polηthat is more active after exposure to high temperatures and organic solvents.


2006 ◽  
Vol 25 (11) ◽  
pp. 2596-2604 ◽  
Author(s):  
Christophe Possoz ◽  
Sergio R Filipe ◽  
Ian Grainge ◽  
David J Sherratt

2020 ◽  
Vol 295 (25) ◽  
pp. 8350-8362 ◽  
Author(s):  
Claire Guérillon ◽  
Stine Smedegaard ◽  
Ivo A. Hendriks ◽  
Michael L. Nielsen ◽  
Niels Mailand

Translesion DNA synthesis (TLS) mediated by low-fidelity DNA polymerases is an essential cellular mechanism for bypassing DNA lesions that obstruct DNA replication progression. However, the access of TLS polymerases to the replication machinery must be kept tightly in check to avoid excessive mutagenesis. Recruitment of DNA polymerase η (Pol η) and other Y-family TLS polymerases to damaged DNA relies on proliferating cell nuclear antigen (PCNA) monoubiquitylation and is regulated at several levels. Using a microscopy-based RNAi screen, here we identified an important role of the SUMO modification pathway in limiting Pol η interactions with DNA damage sites in human cells. We found that Pol η undergoes DNA damage- and protein inhibitor of activated STAT 1 (PIAS1)-dependent polySUMOylation upon its association with monoubiquitylated PCNA, rendering it susceptible to extraction from DNA damage sites by SUMO-targeted ubiquitin ligase (STUbL) activity. Using proteomic profiling, we demonstrate that Pol η is targeted for multisite SUMOylation, and that collectively these SUMO modifications are essential for PIAS1- and STUbL-mediated displacement of Pol η from DNA damage sites. These findings suggest that a SUMO-driven feedback inhibition mechanism is an intrinsic feature of TLS-mediated lesion bypass functioning to curtail the interaction of Pol η with PCNA at damaged DNA to prevent harmful mutagenesis.


2012 ◽  
Vol 33 (3) ◽  
pp. 571-581 ◽  
Author(s):  
Guoqi Liu ◽  
Xiaomi Chen ◽  
Michael Leffak

ABSTRACT(CTG)n· (CAG)ntrinucleotide repeat (TNR) expansion in the 3′ untranslated region of the dystrophia myotonica protein kinase (DMPK) gene causes myotonic dystrophy type 1. However, a direct link between TNR instability, the formation of noncanonical (CTG)n· (CAG)nstructures, and replication stress has not been demonstrated. In a human cell model, we found that (CTG)45· (CAG)45causes local replication fork stalling, DNA hairpin formation, and TNR instability. Oligodeoxynucleotides (ODNs) complementary to the (CTG)45· (CAG)45lagging-strand template eliminated DNA hairpin formation on leading- and lagging-strand templates and relieved fork stalling. Prolonged cell culture, emetine inhibition of lagging-strand synthesis, or slowing of DNA synthesis by low-dose aphidicolin induced (CTG)45· (CAG)45expansions and contractions. ODNs targeting the lagging-strand template blocked the time-dependent or emetine-induced instability but did not eliminate aphidicolin-induced instability. These results show directly that TNR replication stalling, replication stress, hairpin formation, and instability are mechanistically linkedin vivo.


PLoS ONE ◽  
2011 ◽  
Vol 6 (4) ◽  
pp. e18554 ◽  
Author(s):  
Cyrille Le Breton ◽  
Magali Hennion ◽  
Paola B. Arimondo ◽  
Olivier Hyrien

Oncogene ◽  
2011 ◽  
Vol 31 (23) ◽  
pp. 2809-2823 ◽  
Author(s):  
P Pichierri ◽  
S Nicolai ◽  
L Cignolo ◽  
M Bignami ◽  
A Franchitto

2020 ◽  
Vol 295 (25) ◽  
pp. 8363-8373 ◽  
Author(s):  
Paula A. Agudelo Garcia ◽  
Callie M. Lovejoy ◽  
Prabakaran Nagarajan ◽  
Dongju Park ◽  
Liudmila V. Popova ◽  
...  

The replisome is a protein complex on the DNA replication fork and functions in a dynamic environment at the intersection of parental and nascent chromatin. Parental nucleosomes are disrupted in front of the replication fork. The daughter DNA duplexes are packaged with an equal amount of parental and newly synthesized histones in the wake of the replication fork through the activity of the replication-coupled chromatin assembly pathway. Histone acetyltransferase 1 (HAT1) is responsible for the cytosolic diacetylation of newly synthesized histone H4 on lysines 5 and 12, which accompanies replication-coupled chromatin assembly. Here, using proximity ligation assay-based chromatin assembly assays and DNA fiber analysis, we analyzed the role of murine HAT1 in replication-coupled chromatin assembly. We demonstrate that HAT1 physically associates with chromatin near DNA replication sites. We found that the association of HAT1 with newly replicated DNA is transient, but can be stabilized by replication fork stalling. The association of HAT1 with nascent chromatin may be functionally relevant, as HAT1 loss decreased replication fork progression and increased replication fork stalling. Moreover, in the absence of HAT1, stalled replication forks were unstable, and newly synthesized DNA became susceptible to MRE11-dependent degradation. These results suggest that HAT1 links replication fork function to the proper processing and assembly of newly synthesized histones.


2006 ◽  
Vol 25 (24) ◽  
pp. 5775-5782 ◽  
Author(s):  
Thomas Stiff ◽  
Sarah A Walker ◽  
Karen Cerosaletti ◽  
Aaron A Goodarzi ◽  
Eva Petermann ◽  
...  

2020 ◽  
Author(s):  
Calvin Shun Yu Lo ◽  
Marvin van Toorn ◽  
Vincent Gaggioli ◽  
Mariana Paes Dias ◽  
Yifan Zhu ◽  
...  

ABSTRACTStalled fork protection pathway mediated by BRCA1/2 proteins is critical for replication fork stability that has implications in tumorigenesis. However, it is unclear if additional mechanisms are required to maintain replication fork stability. We describe a novel mechanism by which the chromatin remodeler SMARCAD1 stabilizes active replication forks that is essential for resistance towards replication poisons. We find that loss of SMARCAD1 results in toxic enrichment of 53BP1 at replication forks which mediates untimely dissociation of PCNA via the PCNA-unloader, ATAD5. Faster dissociation of PCNA causes frequent fork stalling, inefficient fork restart and accumulation of single-stranded DNA resulting in genome instability. Although, loss of 53BP1 in SMARCAD1 mutants restore PCNA levels, fork restart efficiency, genome stability and tolerance to replication poisons; this requires BRCA1 mediated fork protection. Interestingly, fork protection challenged BRCA1-deficient naïve- or PARPi-resistant tumors require SMARCAD1 mediated active fork stabilization to maintain unperturbed fork progression and cellular proliferation.


Sign in / Sign up

Export Citation Format

Share Document