scholarly journals Targeting of the SUN protein Mps3 to the inner nuclear membrane by the histone variant H2A.Z

2011 ◽  
Vol 193 (3) ◽  
pp. 489-507 ◽  
Author(s):  
Jennifer M. Gardner ◽  
Christine J. Smoyer ◽  
Elizabeth S. Stensrud ◽  
Richard Alexander ◽  
Madelaine Gogol ◽  
...  

Understanding the relationship between chromatin and proteins at the nuclear periphery, such as the conserved SUN family of inner nuclear membrane (INM) proteins, is necessary to elucidate how three-dimensional nuclear architecture is established and maintained. We found that the budding yeast SUN protein Mps3 directly binds to the histone variant H2A.Z but not other histones. Biochemical and genetic data indicate that the interaction between Mps3 and H2A.Z requires the Mps3 N-terminal acidic domain and unique sequences in the H2A.Z N terminus and histone-fold domain. Analysis of binding-defective mutants showed that the Mps3–H2A.Z interaction is not essential for any previously described role for either protein in nuclear organization, and multiple lines of evidence suggest that Mps3–H2A.Z binding occurs independently of H2A.Z incorporation into chromatin. We demonstrate that H2A.Z is required to target a soluble Mps3 fragment to the nucleus and to localize full-length Mps3 in the INM, indicating that H2A.Z has a novel chromatin-independent function in INM targeting of SUN proteins.

2015 ◽  
Vol 43 (6) ◽  
pp. 3114-3127 ◽  
Author(s):  
Kyuho Jeong ◽  
Hayeong Kwon ◽  
Jaewoong Lee ◽  
Donghwan Jang ◽  
Yunbae Pak

1999 ◽  
Vol 147 (5) ◽  
pp. 913-920 ◽  
Author(s):  
Teresa Sullivan ◽  
Diana Escalante-Alcalde ◽  
Harshida Bhatt ◽  
Miriam Anver ◽  
Narayan Bhat ◽  
...  

The nuclear lamina is a protein meshwork lining the nucleoplasmic face of the inner nuclear membrane and represents an important determinant of interphase nuclear architecture. Its major components are the A- and B-type lamins. Whereas B-type lamins are found in all mammalian cells, A-type lamin expression is developmentally regulated. In the mouse, A-type lamins do not appear until midway through embryonic development, suggesting that these proteins may be involved in the regulation of terminal differentiation. Here we show that mice lacking A-type lamins develop to term with no overt abnormalities. However, their postnatal growth is severely retarded and is characterized by the appearance of muscular dystrophy. This phenotype is associated with ultrastructural perturbations to the nuclear envelope. These include the mislocalization of emerin, an inner nuclear membrane protein, defects in which are implicated in Emery-Dreifuss muscular dystrophy (EDMD), one of the three major X-linked dystrophies. Mice lacking the A-type lamins exhibit tissue-specific alterations to their nuclear envelope integrity and emerin distribution. In skeletal and cardiac muscles, this is manifest as a dystrophic condition related to EDMD.


Nucleus ◽  
2012 ◽  
Vol 3 (1) ◽  
pp. 77-87 ◽  
Author(s):  
Babett Steglich ◽  
Guillaume Filion ◽  
Bas van Steensel ◽  
Karl Ekwall

2006 ◽  
Vol 81 (6) ◽  
pp. 3042-3048 ◽  
Author(s):  
Christopher Buser ◽  
Paul Walther ◽  
Thomas Mertens ◽  
Detlef Michel

ABSTRACT We have investigated the morphogenesis of human and murine cytomegalovirus by transmission electron microscopy after high-pressure freezing, freeze substitution, and plastic embedding. We observed large tubular infoldings of the inner nuclear membrane that were free of lamina and active in primary envelopment and subsequent transport of capsids to the nuclear periphery. Semiquantitative determinations of the enlarged inner nuclear membrane area and the location of the primary envelopment of nucleocapsids demonstrated that this structure represents a virus-induced specialized membrane domain at which the particles are preferentially enveloped. This is a previously undescribed structural element relevant in cytomegalovirus morphogenesis.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1544
Author(s):  
Christina Funk ◽  
Débora Marques da Silveira e Santos ◽  
Melanie Ott ◽  
Verena Raschbichler ◽  
Susanne M. Bailer

Herpes simplex virus type 1 nucleocapsids are released from the host nucleus by a budding process through the nuclear envelope called nuclear egress. Two viral proteins, the integral membrane proteins pUL34 and pUL31, form the nuclear egress complex at the inner nuclear membrane, which is critical for this process. The nuclear import of both proteins ensues separately from each other: pUL31 is actively imported through the central pore channel, while pUL34 is transported along the peripheral pore membrane. With this study, we identified a functional bipartite NLS between residues 178 and 194 of pUL34. pUL34 lacking its NLS is mislocalized to the TGN but retargeted to the ER upon insertion of the authentic NLS or a mimic NLS, independent of the insertion site. If co-expressed with pUL31, either of the pUL34-NLS variants is efficiently, although not completely, targeted to the nuclear rim where co-localization with pUL31 and membrane budding seem to occur, comparable to the wild-type. The viral mutant HSV1(17+)Lox-UL34-NLS mt is modestly attenuated but viable and associated with localization of pUL34-NLS mt to both the nuclear periphery and cytoplasm. We propose that targeting of pUL34 to the INM is facilitated by, but not dependent on, the presence of an NLS, thereby supporting NEC formation and viral replication.


2002 ◽  
Vol 13 (3) ◽  
pp. 892-901 ◽  
Author(s):  
Kenneth K. Lee ◽  
Daniel Starr ◽  
Merav Cohen ◽  
Jun Liu ◽  
Min Han ◽  
...  

Mutations in the Caenorhabditis elegans unc-84 gene cause defects in nuclear migration and anchoring. We show that endogenous UNC-84 protein colocalizes with Ce-lamin at the nuclear envelope and that the envelope localization of UNC-84 requires Ce-lamin. We also show that during mitosis, UNC-84 remains at the nuclear periphery until late anaphase, similar to known inner nuclear membrane proteins. UNC-84 protein is first detected at the 26-cell stage and thereafter is present in most cells during development and in adults. UNC-84 is properly expressed in unc-83 andanc-1 lines, which have phenotypes similar tounc-84, suggesting that neither the expression nor nuclear envelope localization of UNC-84 depends on UNC-83 or ANC-1 proteins. The envelope localization of Ce-lamin, Ce-emerin, Ce-MAN1, and nucleoporins are unaffected by the loss of UNC-84. UNC-84 is not required for centrosome attachment to the nucleus because centrosomes are localized normally in unc-84 hyp7 cells despite a nuclear migration defect. Models for UNC-84 localization are discussed.


mBio ◽  
2016 ◽  
Vol 7 (4) ◽  
Author(s):  
Adrian R. Wilkie ◽  
Jessica L. Lawler ◽  
Donald M. Coen

ABSTRACTHerpesviruses, which include important pathogens, remodel the host cell nucleus to facilitate infection. This remodeling includes the formation of structures called replication compartments (RCs) in which herpesviruses replicate their DNA. During infection with the betaherpesvirus, human cytomegalovirus (HCMV), viral DNA synthesis occurs at the periphery of RCs within the nuclear interior, after which assembled capsids must reach the inner nuclear membrane (INM) for translocation to the cytoplasm (nuclear egress). The processes that facilitate movement of HCMV capsids to the INM during nuclear egress are unknown. Although an actin-based mechanism of alphaherpesvirus capsid trafficking to the INM has been proposed, it is controversial. Here, using a fluorescently-tagged, nucleus-localized actin-binding peptide, we show that HCMV, but not herpes simplex virus 1, strongly induced nuclear actin filaments (F-actin) in human fibroblasts. Based on studies using UV inactivation and inhibitors, this induction depended on viral gene expression. Interestingly, by 24 h postinfection, nuclear F-actin formed thicker structures that appeared by super-resolution microscopy to be bundles of filaments. Later in infection, nuclear F-actin primarily localized along the RC periphery and between the RC periphery and the nuclear rim. Importantly, a drug that depolymerized nuclear F-actin caused defects in production of infectious virus, capsid accumulation in the cytoplasm, and capsid localization near the nuclear rim, without decreasing capsid accumulation in the nucleus. Thus, our results suggest that for at least one herpesvirus, nuclear F-actin promotes capsid movement to the nuclear periphery and nuclear egress. We discuss our results in terms of competing models for these processes.IMPORTANCEThe mechanisms underlying herpesvirus nuclear egress have not been fully determined. In particular, how newly assembled capsids move to the inner nuclear membrane for envelopment is uncertain and controversial. In this study, we show that HCMV, an important human pathogen, induces actin filaments in the nuclei of infected cells and that an inhibitor of nuclear F-actin impairs nuclear egress and capsid localization toward the nuclear periphery. Herpesviruses are widespread pathogens that cause or contribute to an array of human diseases. A better understanding of how herpesvirus capsids traffic in the nucleus may uncover novel targets for antiviral intervention and elucidate aspects of the nuclear cytoskeleton, about which little is known.


2015 ◽  
Vol 209 (5) ◽  
pp. 705-720 ◽  
Author(s):  
Andrea Boni ◽  
Antonio Z. Politi ◽  
Petr Strnad ◽  
Wanqing Xiang ◽  
M. Julius Hossain ◽  
...  

Targeting of inner nuclear membrane (INM) proteins is essential for nuclear architecture and function, yet its mechanism remains poorly understood. Here, we established a new reporter that allows real-time imaging of membrane protein transport from the ER to the INM using Lamin B receptor and Lap2β as model INM proteins. These reporters allowed us to characterize the kinetics of INM targeting and establish a mathematical model of this process and enabled us to probe its molecular requirements in an RNA interference screen of 96 candidate genes. Modeling of the phenotypes of genes involved in transport of these INM proteins predicted that it critically depended on the number and permeability of nuclear pores and the availability of nuclear binding sites, but was unaffected by depletion of most transport receptors. These predictions were confirmed with targeted validation experiments on the functional requirements of nucleoporins and nuclear lamins. Collectively, our data support a diffusion retention model of INM protein transport in mammalian cells.


1998 ◽  
Vol 143 (1) ◽  
pp. 5-12 ◽  
Author(s):  
Rita Abranches ◽  
Alison F. Beven ◽  
Luis Aragón-Alcaide ◽  
Peter J. Shaw

We have determined the relationship between overall nuclear architecture, chromosome territories, and transcription sites within the nucleus, using three-dimensional confocal microscopy of well preserved tissue sections of wheat roots. Chromosome territories were visualized by GISH using rye genomic probe in wheat/rye translocation and addition lines. The chromosomes appeared as elongated regions and showed a clear centromere–telomere polarization, with the two visualized chromosomes lying approximately parallel to one another across the nucleus. Labeling with probes to telomeres and centromeres confirmed a striking Rabl configuration in all cells, with a clear clustering of the centromeres, and cell files often maintained a common polarity through several division cycles. Transcription sites were detected by BrUTP incorporation in unfixed tissue sections and revealed a pattern of numerous foci uniformly distributed throughout the nucleoplasm, as well as more intensely labeled foci in the nucleoli. It has been suggested that the gene-rich regions in wheat chromosomes are clustered towards the telomeres. However, we found no indication of a difference in concentration of transcription sites between telomere and centromere poles of the nucleus. Neither could we detect any evidence that the transcription sites were preferentially localized with respect to the chromosome territorial boundaries.


2011 ◽  
Vol 39 (6) ◽  
pp. 1735-1741 ◽  
Author(s):  
Andreas Brachner ◽  
Roland Foisner

The nuclear envelope in eukaryotic cells has important roles in chromatin organization. The inner nuclear membrane contains over 60 transmembrane proteins. LEM [LAP2 (lamina-associated polypeptide 2)/emerin/MAN1] domain-containing proteins of the inner nuclear membrane are involved in tethering chromatin to the nuclear envelope and affect gene expression. They contain a common structural, bihelical motif, the so-called LEM domain, which mediates binding to a conserved chromatin protein, BAF (barrier to autointegration factor). Interestingly, this domain is highly related to other bihelical motifs, termed HeH (helix–extension–helix) and SAP {SAF (scaffold attachment factor)/acinus/PIAS [protein inhibitor of activated STAT (signal transducer and activator of transcription)]} motifs, which are directly linked to DNA. In the present paper, we summarize evidence that the LEM motif evolved from the HeH and SAP domains concomitantly with BAF. In addition, we discuss the potential evolution of HeH/SAP and LEM domain-containing proteins and their role in chromatin tethering and gene regulation from unicellular eukaryotes to mammals.


Sign in / Sign up

Export Citation Format

Share Document