scholarly journals Dynein light chain 1 and a spindle-associated adaptor promote dynein asymmetry and spindle orientation

2012 ◽  
Vol 198 (6) ◽  
pp. 1039-1054 ◽  
Author(s):  
Anja K. Dunsch ◽  
Dean Hammond ◽  
Jennifer Lloyd ◽  
Lothar Schermelleh ◽  
Ulrike Gruneberg ◽  
...  

The cytoplasmic dynein motor generates pulling forces to center and orient the mitotic spindle within the cell. During this positioning process, dynein oscillates from one pole of the cell cortex to the other but only accumulates at the pole farthest from the spindle. Here, we show that dynein light chain 1 (DYNLL1) is required for this asymmetric cortical localization of dynein and has a specific function defining spindle orientation. DYNLL1 interacted with a spindle-microtubule–associated adaptor formed by CHICA and HMMR via TQT motifs in CHICA. In cells depleted of CHICA or HMMR, the mitotic spindle failed to orient correctly in relation to the growth surface. Furthermore, CHICA TQT motif mutants localized to the mitotic spindle but failed to recruit DYNLL1 to spindle microtubules and did not correct the spindle orientation or dynein localization defects. These findings support a model where DYNLL1 and CHICA-HMMR form part of the regulatory system feeding back spindle position to dynein at the cell cortex.

2011 ◽  
Vol 22 (15) ◽  
pp. 2690-2701 ◽  
Author(s):  
Melissa D. Stuchell-Brereton ◽  
Amanda Siglin ◽  
Jun Li ◽  
Jeffrey K. Moore ◽  
Shubbir Ahmed ◽  
...  

Cytoplasmic dynein is a large multisubunit complex involved in retrograde transport and the positioning of various organelles. Dynein light chain (LC) subunits are conserved across species; however, the molecular contribution of LCs to dynein function remains controversial. One model suggests that LCs act as cargo-binding scaffolds. Alternatively, LCs are proposed to stabilize the intermediate chains (ICs) of the dynein complex. To examine the role of LCs in dynein function, we used Saccharomyces cerevisiae, in which the sole function of dynein is to position the spindle during mitosis. We report that the LC8 homologue, Dyn2, localizes with the dynein complex at microtubule ends and interacts directly with the yeast IC, Pac11. We identify two Dyn2-binding sites in Pac11 that exert differential effects on Dyn2-binding and dynein function. Mutations disrupting Dyn2 elicit a partial loss-of-dynein phenotype and impair the recruitment of the dynein activator complex, dynactin. Together these results indicate that the dynein-based function of Dyn2 is via its interaction with the dynein IC and that this interaction is important for the interaction of dynein and dynactin. In addition, these data provide the first direct evidence that LC occupancy in the dynein motor complex is important for function.


2002 ◽  
Vol 13 (3) ◽  
pp. 930-946 ◽  
Author(s):  
Futaba Miki ◽  
Koei Okazaki ◽  
Mizuki Shimanuki ◽  
Ayumu Yamamoto ◽  
Yasushi Hiraoka ◽  
...  

A Schizosaccharomyces pombe spindle pole body (SPB) protein interacts in a two-hybrid system with Dlc1, which belongs to the 14-kDa Tctex-1 dynein light chain family. Green fluorescent protein-tagged Dlc1 accumulated at the SPB throughout the life cycle. During meiotic prophase, Dlc1 was present along astral microtubules and microtubule-anchoring sites on the cell cortex, reminiscent of the cytoplasmic dynein heavy chain Dhc1. In a dlc1-null mutant, Dhc1-dependent nuclear movement in meiotic prophase became irregular in its duration and direction. Dhc1 protein was displaced from the cortex anchors and the formation of microtubule bundle(s) that guide nuclear movement was impaired in the mutant. Meiotic recombination in the dlc1 mutant was reduced to levels similar to that in the dhc1 mutant. Dlc1 and Dhc1 also have roles in karyogamy and rDNA relocation during the sexual phase. Strains mutated in both the dlc1 and dhc1loci displayed more severe defects in recombination, karyogamy, and sporulation than in either single mutant alone, suggesting that Dlc1 is involved in nuclear events that are independent of Dhc1. S. pombe contains a homolog of the 8-kDa dynein light chain, Dlc2. This class of dynein light chain, however, is not essential in either the vegetative or sexual phases.


2020 ◽  
Vol 133 (14) ◽  
pp. jcs243857 ◽  
Author(s):  
Riya Keshri ◽  
Ashwathi Rajeevan ◽  
Sachin Kotak

ABSTRACTProper orientation of the mitotic spindle is critical for accurate development and morphogenesis. In human cells, spindle orientation is regulated by the evolutionarily conserved protein NuMA, which interacts with dynein and enriches it at the cell cortex. Pulling forces generated by cortical dynein orient the mitotic spindle. Cdk1-mediated phosphorylation of NuMA at threonine 2055 (T2055) negatively regulates its cortical localization. Thus, only NuMA not phosphorylated at T2055 localizes at the cell cortex. However, the identity and the mechanism of action of the phosphatase complex involved in T2055 dephosphorylation remains elusive. Here, we characterized the PPP2CA-B55γ (PPP2R2C)–PPP2R1B complex that counteracts Cdk1 to orchestrate cortical NuMA for proper spindle orientation. In vitro reconstitution experiments revealed that this complex is sufficient for T2055 dephosphorylation. Importantly, we identified polybasic residues in NuMA that are critical for T2055 dephosphorylation, and for maintaining appropriate cortical NuMA levels for accurate spindle elongation. Furthermore, we found that Cdk1-mediated phosphorylation and PP2A-B55γ-mediated dephosphorylation at T2055 are reversible events. Altogether, this study uncovers a novel mechanism by which Cdk1 and its counteracting PP2A-B55γ complex orchestrate spatiotemporal levels of cortical force generators for flawless mitosis.


2005 ◽  
Vol 280 (23) ◽  
pp. 21981-21986 ◽  
Author(s):  
John C. Williams ◽  
Hui Xie ◽  
Wayne A. Hendrickson

TcTex-1, one of three dynein light chains of the dynein motor complex, has been implicated in targeting and binding cargoes to cytoplasmic dynein for retrograde or apical transport. Interactions between TcTex-1 and a diverse set of proteins such as the dynein intermediate chain, Fyn, DOC2, FIP1, the poliovirus receptor, CD155, and the rhodopsin cytoplasmic tail have been reported; yet, despite the broad range of targets, a consensus binding sequence remains uncertain. Consequently, we have solved the crystal structure of the full-length Drosophila homolog of TcTex-1 to 1.7 Å resolution using MAD phasing to gain insight into its function and target specificity. The structure is homodimeric with a domain swapping of β-strand 2 and has a fold similar to the dynein light chain, LC8. Based on structural alignment, the TcTex-1 and LC8 sequences show no identity, although the root mean square deviation between secondary structural elements is less than 1.6 Å. Moreover, the N terminus, which is equivalent to β-strand 1 in LC8, is splayed out and binds to a crystallographic dimer as an anti-parallel β-strand at the same position as the neuronal nitric-oxide synthase peptide in the LC8 complex. Similarity to LC8 and comparison to the LC8-neuronal nitricoxide synthase complex suggest that TcTex-1 binds its targets in a similar manner as LC8 and provides insight to the lack of strict sequence identity among the targets for TcTex-1.


2005 ◽  
Vol 16 (7) ◽  
pp. 3107-3116 ◽  
Author(s):  
Anindya Ghosh-Roy ◽  
Bela S. Desai ◽  
Krishanu Ray

Toward the end of spermiogenesis, spermatid nuclei are compacted and the clonally related spermatids individualize to become mature and active sperm. Studies in Drosophila showed that caudal end-directed movement of a microfilament-rich structure, called investment cone, expels the cytoplasmic contents of individual spermatids. F-actin dynamics plays an important role in this process. Here we report that the dynein light chain 1 (DLC1) of Drosophila is involved in two separate cellular processes during sperm individualization. It is enriched around spermatid nuclei during postelongation stages and plays an important role in the dynein-dynactin–dependent rostral retention of the nuclei during this period. In addition, DDLC1 colocalizes with dynamin along investment cones and regulates F-actin assembly at this organelle by retaining dynamin along the cones. Interestingly, we found that this process does not require the other subunits of cytoplasmic dynein-dynactin complex. Altogether, these observations suggest that DLC1 could independently regulate multiple cellular functions and established a novel role of this protein in F-actin assembly in Drosophila.


1996 ◽  
Vol 16 (5) ◽  
pp. 1966-1977 ◽  
Author(s):  
T Dick ◽  
K Ray ◽  
H K Salz ◽  
W Chia

We report the molecular and genetic characterization of the cytoplasmic dynein light-chain gene, ddlc1, from Drosophila melanogaster. ddlc1 encodes the first cytoplasmic dynein light chain identified, and its genetic analysis represents the first in vivo characterization of cytoplasmic dynein function in higher eucaryotes. The ddlc1 gene maps to 4E1-2 and encodes an 89-amino-acid polypeptide with a high similarity to the axonemal 8-kDa outer-arm dynein light chain from Chlamydomonas flagella. Developmental Northern (RNA) blot analysis and ovary and embryo RNA in situ hybridizations indicate that the ddlc1 gene is expressed ubiquitously. Anti-DDLC1 antibody analyses show that the DDLC1 protein is localized in the cytoplasm. P-element-induced partial-loss-of-function mutations cause pleiotropic morphogenetic defects in bristle and wing development, as well as in oogenesis, and hence result in female sterility. The morphological abnormalities found in the ovaries are always associated with a loss of cellular shape and structure, as visualized by a disorganization of the actin cytoskeleton. Total-loss-of-function mutations cause lethality. A large proportion of mutant animals degenerate during embryogenesis, and the dying cells show morphological changes characteristic of apoptosis, namely, cell and nuclear condensation and fragmentation, as well as DNA degradation. Cloning of the human homolog of the ddlc1 gene, hdlc1, demonstrates that the dynein light-chain 1 is highly conserved in flies and humans. Northern blot analysis and epitope tagging show that the hdlc1 gene is ubiquitously expressed and that the human dynein light chain 1 is localized in the cytoplasm. hdlc1 maps to 14q24.


Development ◽  
1997 ◽  
Vol 124 (12) ◽  
pp. 2409-2419 ◽  
Author(s):  
M. McGrail ◽  
T.S. Hays

During animal development cellular differentiation is often preceded by an asymmetric cell division whose polarity is determined by the orientation of the mitotic spindle. In the fruit fly, Drosophila melanogaster, the oocyte differentiates in a 16-cell syncytium that arises from a cystoblast which undergoes 4 synchronous divisions with incomplete cytokinesis. During these divisions, spindle orientation is highly ordered and is thought to impart a polarity to the cyst that is necessary for the subsequent differentiation of the oocyte. Using mutations in the Drosophila cytoplasmic dynein heavy chain gene, Dhc64C, we show that cytoplasmic dynein is required at two stages of oogenesis. Early in oogenesis, dynein mutations disrupt spindle orientation in dividing cysts and block oocyte determination. The localization of dynein in mitotic cysts suggests spindle orientation is mediated by the microtubule motor cytoplasmic dynein. Later in oogenesis, dynein function is necessary for proper differentiation, but does not appear to participate in morphogen localization within the oocyte. These results provide evidence for a novel developmental role for the cytoplasmic dynein motor in cellular determination and differentiation.


Development ◽  
1996 ◽  
Vol 122 (10) ◽  
pp. 2955-2963 ◽  
Author(s):  
R. Phillis ◽  
D. Statton ◽  
P. Caruccio ◽  
R.K. Murphey

Mutations in an 8 kDa (8x10(3) Mr) cytoplasmic dynein light chain disrupt sensory axon trajectories in the imaginal nervous system of Drosophila. Weak alleles are behaviorally mutant, female-sterile and exhibit bristle thinning and bristle loss. Null alleles are lethal in late pupal stages and alter neuronal anatomy within the imaginal CNS. We utilized P[Gal4] inserts to examine the axon projections of stretch receptor neurons and an engrailed-lacZ construct to characterize the anatomy of tactile neurons. In mutant animals both types of sensory neurons exhibited altered axon trajectories within the CNS, suggesting a defect in axon pathfinding. However, the alterations in axon trajectory did not prevent these axons from reaching their normal termination regions. In the alleles producing these neuronal phenotypes, expression of the cytoplasmic dynein 8 kDa light chain gene is completely absent. These results demonstrate a new function for the cytoplasmic dynein light chain in the regulation of axonogenesis and may provide a point of entry for studies of the role of cellular motors in growth cone guidance.


2004 ◽  
Vol 15 (7) ◽  
pp. 3005-3014 ◽  
Author(s):  
Min-gang Li ◽  
Madeline Serr ◽  
Eric A. Newman ◽  
Thomas S. Hays

Variations in subunit composition and modification have been proposed to regulate the multiple functions of cytoplasmic dynein. Here, we examine the role of the Drosophila ortholog of tctex-1, the 14-kDa dynein light chain. We show that the 14-kDa light chain is a bona fide component of Drosophila cytoplasmic dynein and use P element excision to generate flies that completely lack this dynein subunit. Remarkably, the null mutant is viable and the only observed defect is complete male sterility. During spermatid differentiation, the 14-kDa light chain is required for the localization of a nuclear “cap” of cytoplasmic dynein and for proper attachment between the sperm nucleus and flagellar basal body. Our results provide evidence that the function of the 14-kDa light chain in Drosophila is distinct from other dynein subunits and is not required for any essential functions in early development or in the adult organism.


Sign in / Sign up

Export Citation Format

Share Document