dynein motor
Recently Published Documents


TOTAL DOCUMENTS

258
(FIVE YEARS 64)

H-INDEX

51
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Chunte Sam Peng ◽  
Yunxiang Zhang ◽  
Qian Liu ◽  
G. Edward Marti ◽  
Yu-Wen Alvin Huang ◽  
...  

Cytoplasmic dynein is essential for intracellular transport, but because of its complexity, we still do not fully understand how this 1.5 megadalton protein works. Here, we used novel optical probes that enable single-particle tracking (SPT) of individual cargos transported by dynein motors in live neurons over 900 μm. Analyses using the Fluctuation Theorem (FT) showed that the number of dynein molecules switches between 1-5 motors during the transport. Clearly resolved single-molecular steps revealed that the dwell times between individual steps were accurately described by an enzymatic cycle dominated by two equal and thermally-activated rate constants. Based on these data, we propose a new molecular model whereby each step requires the hydrolysis of 2 ATPs. The model is consistent with extensive structural, single-molecule and biochemical measurements.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abhishek Cukkemane ◽  
Nina Becker ◽  
Mara Zielinski ◽  
Benedikt Frieg ◽  
Nils-Alexander Lakomek ◽  
...  

AbstractChronic mental illnesses (CMIs) pose a significant challenge to global health due to their complex and poorly understood etiologies and hence, absence of causal therapies. Research of the past two decades has revealed dysfunction of the disrupted in schizophrenia 1 (DISC1) protein as a predisposing factor involved in several psychiatric disorders. DISC1 is a multifaceted protein that serves myriads of functions in mammalian cells, for instance, influencing neuronal development and synapse maintenance. It serves as a scaffold hub forming complexes with a variety (~300) of partners that constitute its interactome. Herein, using combinations of structural and biophysical tools, we demonstrate that the C-region of the DISC1 protein is highly polymorphic, with important consequences for its physiological role. Results from solid-state NMR spectroscopy and electron microscopy indicate that the protein not only forms symmetric oligomers but also gives rise to fibrils closely resembling those found in certain established amyloid proteinopathies. Furthermore, its aggregation as studied by isothermal titration calorimetry (ITC) is an exergonic process, involving a negative enthalpy change that drives the formation of oligomeric (presumably tetrameric) species as well as β-fibrils. We have been able to narrow down the β-core region participating in fibrillization to residues 716–761 of full-length human DISC1. This region is absent in the DISC1Δ22aa splice variant, resulting in reduced association with proteins from the dynein motor complex, viz., NDE-like 1 (NDEL1) and lissencephaly 1 (LIS1), which are crucial during mitosis. By employing surface plasmon resonance, we show that the oligomeric DISC1 C-region has an increased affinity and shows cooperativity in binding to LIS1 and NDEL1, in contrast to the noncooperative binding mode exhibited by the monomeric version. Based on the derived structural models, we propose that the association between the binding partners involves two neighboring subunits of DISC1 C-region oligomers. Altogether, our findings highlight the significance of the DISC1 C-region as a crucial factor governing the balance between its physiological role as a multifunctional scaffold protein and aggregation-related aberrations with potential significance for disease.


Genetics ◽  
2021 ◽  
Author(s):  
Sara M Fielder ◽  
Tori Kent ◽  
Huiping Ling ◽  
Elizabeth J Gleason ◽  
William G Kelly

Abstract The dynein motor complex is thought to aid in homolog pairing in many organisms by moving chromosomes within the nuclear periphery to promote and test homologous interactions. This precedes synaptonemal complex (SC) formation during homolog synapsis, which stabilizes homolog proximity during recombination. We observed that depletion of the dynein light chain (DLC-1) in Caenorhabditis elegans irreversibly prevents synapsis, causing an increase in off-chromatin formation of SC protein foci with increasing temperature. This requirement for DLC-1 is independent of its function in dynein motors, as SYP protein foci do not form with depletion of other dynein motor components. In contrast to normal SC-related structures, foci formed with DLC-1 depletion are resistant to dissolution with 1,6-hexanediol, similar to aggregates of SC proteins formed in high growth temperatures. Dynein light chains have been shown to act as hub proteins that interact with other proteins through a conserved binding motif. We identified a similar DLC-1 binding motif in the C. elegans SC protein SYP-2, and mutation of the putative motif causes meiosis defects that are exacerbated by elevated temperatures. We propose that DLC-1 acts as a pre-synapsis chaperone-like factor for SYP proteins to help regulate their self-association prior to the signals for SC assembly, a role that is revealed by its increased essentiality at elevated temperatures.


Structure ◽  
2021 ◽  
Author(s):  
Yifan Zhang ◽  
Ziyue Chen ◽  
Fang Wang ◽  
Honghua Sun ◽  
Xueliang Zhu ◽  
...  

2021 ◽  
Vol 220 (12) ◽  
Author(s):  
Amrita Kumari ◽  
Chandan Kumar ◽  
Rajaiah Pergu ◽  
Megha Kumar ◽  
Sagar P. Mahale ◽  
...  

The dynein motor performs multiple functions in mitosis by engaging with a wide cargo spectrum. One way to regulate dynein’s cargo-binding selectivity is through the C-terminal domain (CTD) of its light intermediate chain 1 subunit (LIC1), which binds directly with cargo adaptors. Here we show that mitotic phosphorylation of LIC1-CTD at its three cdk1 sites is required for proper mitotic progression, for dynein loading onto prometaphase kinetochores, and for spindle assembly checkpoint inactivation in human cells. Mitotic LIC1-CTD phosphorylation also engages the prolyl isomerase Pin1 predominantly to Hook2-dynein-Nde1-Lis1 complexes, but not to dynein-spindly-dynactin complexes. LIC1-CTD dephosphorylation abrogates dynein-Pin1 binding, promotes prophase centrosome–nuclear envelope detachment, and impairs metaphase chromosome congression and mitotic Golgi fragmentation, without affecting interphase membrane transport. Phosphomutation of a conserved LIC1-CTD SP site in zebrafish leads to early developmental defects. Our work reveals that LIC1-CTD phosphorylation differentially regulates distinct mitotic dynein pools and suggests the evolutionary conservation of this phosphoregulation.


2021 ◽  
Author(s):  
Subash Godar ◽  
James Oristian ◽  
Valerie Hinsch ◽  
Katherine Wentworth ◽  
Ethan Lopez ◽  
...  

AbstractFlagellar motility is essential for the cell morphology, viability, and virulence of pathogenic kinetoplastids, including trypanosomes. Trypanosoma brucei flagella exhibit a bending wave that propagates from the flagellum’s tip to its base, rather than base-to-tip as in other eukaryotes. Thousands of dynein motor proteins coordinate their activity to drive ciliary bending wave propagation. Dynein- associated light and intermediate chains regulate the biophysical mechanisms of axonemal dynein. Tctex- type outer arm dynein light chain 2 (LC2) regulates flagellar bending wave propagation direction, amplitude, and frequency in Chlamydomonas reinhardtii. However, the role of Tctex-type light chains in regulating T. brucei motility is unknown. Here, we used a combination of bioinformatics, in-situ molecular tagging, and immunofluorescence microscopy to identify a Tctex-type light chain in the procyclic form of T. brucei (TbLC2). We knocked down TbLC2 expression using RNAi, rescued the knockdown with eGFP- tagged TbLC2, and quantified TbLC2’s effects on trypanosome cell biology and biophysics. We found that TbLC2 knockdown resulted in kinetoplast mislocalization and the formation of multiple cell clusters in cell culture. We also found that TbLC2 knockdown reduced the directional persistence of trypanosome cell swimming, induced an asymmetric ciliary bending waveform, modulated the bias between the base-to- tip and tip-to-base beating modes, and increased the beating frequency. Together, our findings are consistent with a model of TbLC2 as a down-regulator of axonemal dynein activity that stabilizes the forward tip-to-base beating ciliary waveform characteristic of trypanosome cells. Our work sheds light on axonemal dynein regulation mechanisms that contribute to pathogenic kinetoplastids’ unique tip-to-base ciliary beating nature and how those mechanisms underlie dynein-driven ciliary motility more generally.Author SummaryKinetoplastea is a class of ciliated protists that include parasitic trypanosomes, which cause severe disease in people and livestock in tropical regions across the globe. All trypanosomes, including Trypanosoma brucei, require a cilium to provide propulsive force for directional swimming motility, host immune evasion, and various aspects of their cell cycle. Thus, a functional cilium is essential for the virulence of the parasite.Trypanosome cilia exhibit a unique tip-to-base beating mechanism, different from the base-to-tip beating of most other eukaryotic cilia. Multiple ciliary proteins are involved in the complex biophysical and biochemical mechanisms that underly the trypanosome ciliary beating. These include dynein motor proteins that power the beat, dynein-related light chains that regulate the beat, and many other proteins in the nexin-dynein regulatory complex, in the radial spokes, and associated with the central pair of microtubules, for example.Here, we identify a Tctex-type dynein light chain in T. brucei that we named TbLC2 because it has sequence homology, structural similarity, and ciliary localization like LC2 homologs in other organisms. We demonstrate that TbLC2 has critical dynein regulatory functions, with implications on the unique aspects of trypanosome ciliary beating and cellular swimming motility. Our study represents an additional step toward understanding the functions of the trypanosome ciliary proteome, which could provide novel therapeutic targets against the unique aspects of trypanosome ciliary motility.


Author(s):  
Qinhui Rao ◽  
Long Han ◽  
Yue Wang ◽  
Pengxin Chai ◽  
Yin-wei Kuo ◽  
...  

AbstractThousands of outer-arm dyneins (OADs) are arrayed in the axoneme to drive a rhythmic ciliary beat. Coordination among multiple OADs is essential for generating mechanical forces to bend microtubule doublets (MTDs). Using electron microscopy, we determined high-resolution structures of Tetrahymena thermophila OAD arrays bound to MTDs in two different states. OAD preferentially binds to MTD protofilaments with a pattern resembling the native tracks for its distinct microtubule-binding domains. Upon MTD binding, free OADs are induced to adopt a stable parallel conformation, primed for array formation. Extensive tail-to-head (TTH) interactions between OADs are observed, which need to be broken for ATP turnover by the dynein motor. We propose that OADs in an array sequentially hydrolyze ATP to slide the MTDs. ATP hydrolysis in turn relaxes the TTH interfaces to effect free nucleotide cycles of downstream OADs. These findings lead to a model explaining how conformational changes in the axoneme produce coordinated action of dyneins.


Biology Open ◽  
2021 ◽  
Author(s):  
Petra zur Lage ◽  
Zhiyan Xi ◽  
Jennifer Lennon ◽  
Iain Hunter ◽  
Wai Kit Chan ◽  
...  

Ciliary motility is powered by a suite of highly conserved axoneme-specific dynein motor complexes. In humans the impairment of these motors through mutation results in the disease, Primary Ciliary Dyskinesia (PCD). Studies in Drosophila have helped to validate several PCD genes whose products are required for cytoplasmic pre-assembly of axonemal dynein motors. Here we report the characterisation of the Drosophila orthologue of the less known assembly factor, DNAAF3. This gene, CG17669 (Dnaaf3), is expressed exclusively in developing mechanosensory chordotonal (Ch) neurons and the cells that generate spermatozoa, the only two Drosophila cell types bearing cilia/flagella containing dynein motors. Mutation of Dnaaf3 results in larvae that are deaf and adults that are uncoordinated, indicating defective Ch neuron function. The mutant Ch neuron cilia of the antenna specifically lack dynein arms, while Ca imaging in larvae reveals a complete loss of Ch neuron response to vibration stimulus, confirming that mechanotransduction relies on ciliary dynein motors. Mutant males are infertile with immotile sperm whose flagella lack dynein arms and show axoneme disruption. Analysis of proteomic changes suggest a reduction in heavy chains of all axonemal dynein forms, consistent with an impairment of dynein pre-assembly.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1885
Author(s):  
Dinu Antony ◽  
Han G. Brunner ◽  
Miriam Schmidts

Although ubiquitously present, the relevance of cilia for vertebrate development and health has long been underrated. However, the aberration or dysfunction of ciliary structures or components results in a large heterogeneous group of disorders in mammals, termed ciliopathies. The majority of human ciliopathy cases are caused by malfunction of the ciliary dynein motor activity, powering retrograde intraflagellar transport (enabled by the cytoplasmic dynein-2 complex) or axonemal movement (axonemal dynein complexes). Despite a partially shared evolutionary developmental path and shared ciliary localization, the cytoplasmic dynein-2 and axonemal dynein functions are markedly different: while cytoplasmic dynein-2 complex dysfunction results in an ultra-rare syndromal skeleto-renal phenotype with a high lethality, axonemal dynein dysfunction is associated with a motile cilia dysfunction disorder, primary ciliary dyskinesia (PCD) or Kartagener syndrome, causing recurrent airway infection, degenerative lung disease, laterality defects, and infertility. In this review, we provide an overview of ciliary dynein complex compositions, their functions, clinical disease hallmarks of ciliary dynein disorders, presumed underlying pathomechanisms, and novel developments in the field.


2021 ◽  
Author(s):  
Keith P. Eidell ◽  
Alenka Lovy ◽  
Nicholas R. Sylvain ◽  
Frank A. Scangarello ◽  
Hayley I. Muendlein ◽  
...  

Integrin engagement within the immune synapse enhances T cell activation, but our understanding of this process is incomplete. In response to T cell receptor (TCR) ligation, SLP-76 (LCP2), ADAP (FYB), and SKAP-55 (SKAP1) are recruited into microclusters and activate integrins via the effectors Talin-1 and Kindlin-3. We postulated that integrins influence the centripetal transport and signaling of SLP-76 microclusters via these linkages. We show that contractile myosin filaments surround and are co-transported with SLP-76 microclusters, and that TCR ligand density governs the centripetal movement of both structures. Centripetal transport requires formin activity, actomyosin contraction, microtubule integrity, and dynein motor function. Although immobilized VLA-4 (a4b1) and LFA-1 (aLb2) ligands arrest the centripetal movement of SLP-76 microclusters and myosin filaments, VLA-4 acts distally, while LFA-1 acts in the lamellum. Integrin b2, Kindlin-3, and Zyxin are required for complete centripetal transport, while integrin b1 and Talin-1 are not. CD69 upregulation is similarly dependent on integrin b2, Kindlin-3, and Zyxin, but not Talin-1. These findings highlight the integration of cytoskeletal systems within the immune synapse and reveal extracellular ligand-independent roles for LFA-1 and Kindlin-3.


Sign in / Sign up

Export Citation Format

Share Document