scholarly journals The Bruchpilot cytomatrix determines the size of the readily releasable pool of synaptic vesicles

2013 ◽  
Vol 202 (4) ◽  
pp. 667-683 ◽  
Author(s):  
Tanja Matkovic ◽  
Matthias Siebert ◽  
Elena Knoche ◽  
Harald Depner ◽  
Sara Mertel ◽  
...  

Synaptic vesicles (SVs) fuse at a specialized membrane domain called the active zone (AZ), covered by a conserved cytomatrix. How exactly cytomatrix components intersect with SV release remains insufficiently understood. We showed previously that loss of the Drosophila melanogaster ELKS family protein Bruchpilot (BRP) eliminates the cytomatrix (T bar) and declusters Ca2+ channels. In this paper, we explored additional functions of the cytomatrix, starting with the biochemical identification of two BRP isoforms. Both isoforms alternated in a circular array and were important for proper T-bar formation. Basal transmission was decreased in isoform-specific mutants, which we attributed to a reduction in the size of the readily releasable pool (RRP) of SVs. We also found a corresponding reduction in the number of SVs docked close to the remaining cytomatrix. We propose that the macromolecular architecture created by the alternating pattern of the BRP isoforms determines the number of Ca2+ channel-coupled SV release slots available per AZ and thereby sets the size of the RRP.

PLoS Biology ◽  
2015 ◽  
Vol 13 (10) ◽  
pp. e1002267 ◽  
Author(s):  
Taulant Bacaj ◽  
Dick Wu ◽  
Jacqueline Burré ◽  
Robert C. Malenka ◽  
Xinran Liu ◽  
...  

2007 ◽  
Vol 97 (1) ◽  
pp. 948-950 ◽  
Author(s):  
Jane M. Sullivan

Paired-pulse depression (PPD) is a form of short-term plasticity that plays a central role in processing of synaptic activity and is manifest as a decrease in the size of the response to the second of two closely timed stimuli. Despite mounting evidence to the contrary, PPD is still commonly thought to reflect depletion of the pool of synaptic vesicles available for release in response to the second stimulus. Here it is shown that PPD cannot be accounted for by depletion at excitatory synapses made by hippocampal neurons because PPD is unaffected by changes in the fraction of the readily releasable pool (RRP) released by the first of a pair of pulses.


2020 ◽  
Vol 40 (45) ◽  
pp. 8604-8617
Author(s):  
Ricardo Martín ◽  
Nuria García-Font ◽  
Alberto Samuel Suárez-Pinilla ◽  
David Bartolomé-Martín ◽  
José Javier Ferrero ◽  
...  

2012 ◽  
Vol 32 (1) ◽  
pp. 68-84 ◽  
Author(s):  
D. Gonzalez-Forero ◽  
F. Montero ◽  
V. Garcia-Morales ◽  
G. Dominguez ◽  
L. Gomez-Perez ◽  
...  

2009 ◽  
Vol 186 (1) ◽  
pp. 129-145 ◽  
Author(s):  
Wernher Fouquet ◽  
David Owald ◽  
Carolin Wichmann ◽  
Sara Mertel ◽  
Harald Depner ◽  
...  

Synaptic vesicles fuse at active zone (AZ) membranes where Ca2+ channels are clustered and that are typically decorated by electron-dense projections. Recently, mutants of the Drosophila melanogaster ERC/CAST family protein Bruchpilot (BRP) were shown to lack dense projections (T-bars) and to suffer from Ca2+ channel–clustering defects. In this study, we used high resolution light microscopy, electron microscopy, and intravital imaging to analyze the function of BRP in AZ assembly. Consistent with truncated BRP variants forming shortened T-bars, we identify BRP as a direct T-bar component at the AZ center with its N terminus closer to the AZ membrane than its C terminus. In contrast, Drosophila Liprin-α, another AZ-organizing protein, precedes BRP during the assembly of newly forming AZs by several hours and surrounds the AZ center in few discrete punctae. BRP seems responsible for effectively clustering Ca2+ channels beneath the T-bar density late in a protracted AZ formation process, potentially through a direct molecular interaction with intracellular Ca2+ channel domains.


PLoS ONE ◽  
2012 ◽  
Vol 7 (10) ◽  
pp. e48034 ◽  
Author(s):  
Hiroyuki Kawano ◽  
Shutaro Katsurabayashi ◽  
Yasuhiro Kakazu ◽  
Yuta Yamashita ◽  
Natsuko Kubo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document