scholarly journals Multiple mechanisms determine the order of APC/C substrate degradation in mitosis

2014 ◽  
Vol 207 (1) ◽  
pp. 23-39 ◽  
Author(s):  
Dan Lu ◽  
Jennifer Y. Hsiao ◽  
Norman E. Davey ◽  
Vanessa A. Van Voorhis ◽  
Scott A. Foster ◽  
...  

The ubiquitin protein ligase anaphase-promoting complex or cyclosome (APC/C) controls mitosis by promoting ordered degradation of securin, cyclins, and other proteins. The mechanisms underlying the timing of APC/C substrate degradation are poorly understood. We explored these mechanisms using quantitative fluorescence microscopy of GFP-tagged APC/CCdc20 substrates in living budding yeast cells. Degradation of the S cyclin, Clb5, begins early in mitosis, followed 6 min later by the degradation of securin and Dbf4. Anaphase begins when less than half of securin is degraded. The spindle assembly checkpoint delays the onset of Clb5 degradation but does not influence securin degradation. Early Clb5 degradation depends on its interaction with the Cdk1–Cks1 complex and the presence of a Cdc20-binding “ABBA motif” in its N-terminal region. The degradation of securin and Dbf4 is delayed by Cdk1-dependent phosphorylation near their Cdc20-binding sites. Thus, a remarkably diverse array of mechanisms generates robust ordering of APC/CCdc20 substrate destruction.

2004 ◽  
Vol 15 (7) ◽  
pp. 3345-3356 ◽  
Author(s):  
Sylvie Tournier ◽  
Yannick Gachet ◽  
Vicky Buck ◽  
Jeremy S. Hyams ◽  
Jonathan B.A. Millar

In animal and yeast cells, the mitotic spindle is aligned perpendicularly to the axis of cell division. This ensures that sister chromatids are separated to opposite sides of the cytokinetic actomyosin ring. In fission yeast, spindle rotation is dependent upon the interaction of astral microtubules with the cortical actin cytoskeleton. In this article, we show that addition of Latrunculin A, which prevents spindle rotation, delays the separation of sister chromatids and anaphase promoting complex-mediated destruction of spindle-associated Securin and Cyclin B. Moreover, we find that whereas sister kinetochore pairs normally congress to the spindle midzone before anaphase onset, this congression is disrupted when astral microtubule contact with the actin cytoskeleton is disturbed. By analyzing the timing of kinetochore separation, we find that this anaphase delay requires the Bub3, Mad3, and Bub1 but not the Mad1 or Mad2 spindle assembly checkpoint proteins. In agreement with this, we find that Bub1 remains associated with kinetochores when spindles are mispositioned. These data indicate that, in fission yeast, astral microtubule contact with the medial cell cortex is monitored by a subset of spindle assembly checkpoint proteins. We propose that this checkpoint ensures spindles are properly oriented before anaphase takes place.


2005 ◽  
Vol 25 (5) ◽  
pp. 2031-2044 ◽  
Author(s):  
Barbara C. M. van de Weerdt ◽  
Marcel A. T. M. van Vugt ◽  
Catherine Lindon ◽  
Jos J. W. Kauw ◽  
Marieke J. Rozendaal ◽  
...  

ABSTRACT Polo-like kinase 1 (Plk1) plays a role in numerous events in mitosis, but how the multiple functions of Plk1 are separated is poorly understood. We studied regulation of Plk1 through two putative phosphorylation residues, Ser-137 and Thr-210. Using phospho-specific antibodies, we found that Thr-210 phosphorylation precedes Ser-137 phosphorylation in vivo, the latter occurring specifically in late mitosis. We show that expression of two activating mutants of these residues, S137D and T210D, results in distinct mitotic phenotypes. Whereas expression of both phospho-mimicking mutants as well as of the double mutant leads to accelerated mitotic entry, further progression through mitosis is dramatically different: the T210D mutant causes a spindle assembly checkpoint-dependent delay, whereas the expression of the S137D mutant or the double mutant results in untimely activation of the anaphase-promoting complex/cyclosome (APC/C) and frequent mitotic catastrophe. Using nonphosphorylatable Plk1-S137A and Plk1-T210A mutants, we show that both sites contribute to proper mitotic progression. Based on these observations, we propose that Plk1 function is altered at different stages of mitosis through consecutive posttranslational events, e.g., at Ser-137 and Thr-210. Furthermore, our data show that uncontrolled Plk1 activation can uncouple APC/C activity from spindle assembly checkpoint control.


2008 ◽  
Vol 183 (2) ◽  
pp. 267-277 ◽  
Author(s):  
Evan C. Osmundson ◽  
Dipankar Ray ◽  
Finola E. Moore ◽  
Qingshen Gao ◽  
Gerald H. Thomsen ◽  
...  

Activation of the anaphase-promoting complex/cyclosome (APC/C) by Cdc20 is critical for the metaphase–anaphase transition. APC/C-Cdc20 is required for polyubiquitination and degradation of securin and cyclin B at anaphase onset. The spindle assembly checkpoint delays APC/C-Cdc20 activation until all kinetochores attach to mitotic spindles. In this study, we demonstrate that a HECT (homologous to the E6-AP carboxyl terminus) ubiquitin ligase, Smurf2, is required for the spindle checkpoint. Smurf2 localizes to the centrosome, mitotic midbody, and centromeres. Smurf2 depletion or the expression of a catalytically inactive Smurf2 results in misaligned and lagging chromosomes, premature anaphase onset, and defective cytokinesis. Smurf2 inactivation prevents nocodazole-treated cells from accumulating cyclin B and securin and prometaphase arrest. The silencing of Cdc20 in Smurf2-depleted cells restores mitotic accumulation of cyclin B and securin. Smurf2 depletion results in enhanced polyubiquitination and degradation of Mad2, a critical checkpoint effector. Mad2 is mislocalized in Smurf2-depleted cells, suggesting that Smurf2 regulates the localization and stability of Mad2. These data indicate that Smurf2 is a novel mitotic regulator.


Cell Cycle ◽  
2005 ◽  
Vol 4 (11) ◽  
pp. 1561-1575 ◽  
Author(s):  
Juan F. Gimenez-Abian ◽  
Laura A. Díaz-Martínez ◽  
Karin G. Wirth ◽  
Catherine A. Andrews ◽  
Gonzalo Giménez-Martín ◽  
...  

1999 ◽  
Vol 354 (1389) ◽  
pp. 1583-1590 ◽  
Author(s):  
G. Fang ◽  
H. Yu ◽  
W. Kirschner

Proteolysis controls key transitions at several points in the cell cycle. In mitosis, the activation of a large ubiquitin–protein ligase, the anaphase–promoting complex (APC), is required for anaphase initiation and for exit from mitosis. We show that APC is under complex control by a network of regulatory factors, CDC20, CDH1 and MAD2. CDC20 and CDH1 are activators of APC; they bind directly to APC and activate its cyclin ubiquitination activity. CDC20 activates APC at the onset of anaphase in a destruction box (DB)–dependent manner, while CDH1 activates APC from late anaphase through G1 with apparently a much relaxed specificity for the DB. Therefore, CDC20 and CDH1 control both the temporal order of activation and the substrate specificity of APC, and hence regulate different events during mitosis and G1. Counteracting the effect of CDC20, the checkpoint protein MAD2 acts as an inhibitor of APC. When the spindle–assembly checkpoint is activated, MAD2 forms a ternary complex with CDC20 and APC to prevent activation of APC, and thereby arrests cells at prometaphase. Thus, a combination of positive and negative regulators establishes a regulatory circuit of APC, ensuring an ordered progression of events through cell division.


2011 ◽  
Vol 286 (18) ◽  
pp. 15666-15677 ◽  
Author(s):  
Somsubhra Nath ◽  
Taraswi Banerjee ◽  
Debrup Sen ◽  
Tania Das ◽  
Susanta Roychoudhury

The spindle assembly checkpoint (SAC) ensures accurate segregation of chromosomes by monitoring kinetochore attachment of spindles during mitosis. Proper progression of mitosis depends on orderly ubiquitination and subsequent degradation of various mitotic inhibitors. At the molecular level, upon removal of SAC, Cdc20 activates E3 ubiquitin ligase anaphase-promoting complex/cyclosome that, along with E2 ubiquitin-conjugating enzyme UbcH10, executes this function. Both Cdc20 and UbcH10 are overexpressed in many cancer types and are associated with defective SAC function leading to chromosomal instability. The precise mechanism of correlated overexpression of these two proteins remains elusive. We show that Cdc20 transcriptionally up-regulates UbcH10 expression. The WD40 domain of Cdc20 is required for this activity. Physical interaction between Cdc20 and anaphase-promoting complex/cyclosome-CBP/p300 complex and its subsequent recruitment to the UBCH10 promoter are involved in this transactivation process. This transcriptional regulatory function of Cdc20 was observed to be cell cycle-specific. We hypothesize that this co-regulated overexpression of both proteins contributes to chromosomal instability.


2016 ◽  
Vol 215 (2) ◽  
pp. 143-145 ◽  
Author(s):  
Michael Brandeis

The spindle assembly checkpoint arrests mitotic cells by preventing degradation of cyclin B1 by the anaphase-promoting complex/cyclosome, but some cells evade this checkpoint and slip out of mitosis. Balachandran et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201601083) show that the E3 ligase CRL2ZYG11 degrades cyclin B1, allowing mitotic slippage.


2018 ◽  
Author(s):  
Lydia R Heasley ◽  
Jennifer G DeLuca ◽  
Steven M Markus

The Spindle Assembly Checkpoint (SAC) prevents erroneous chromosome segregation by delaying mitotic progression when chromosomes are incorrectly attached to the mitotic spindle. This delay is mediated by Mitotic Checkpoint Complexes (MCCs), which assemble at unattached kinetochores and repress the activity of the Anaphase Promoting Complex/Cyclosome (APC/C). The cellular localizations of MCCs are likely critical for proper SAC function, yet remain poorly defined. We recently demonstrated that in mammalian cells, in which the nuclear envelope disassembles during mitosis, MCCs diffuse throughout the spindle region and cytoplasm. Here, we employed binucleate yeast zygotes to examine the localization dynamics of SAC effectors required for MCC assembly and function in budding yeast, in which the nuclear envelope remains intact throughout mitosis. Our findings indicate that in yeast MCCs are confined to the nuclear compartment and excluded from the cytoplasm during mitosis. In contrast, we find that effectors of the Mitotic Exit Network (MEN) - a pathway that initiates disassembly of the anaphase spindle only when it is properly oriented - are in fact freely exchanged between multiple nuclei within a shared cytoplasm. Our study provides insight into how cell cycle checkpoints have evolved to function in diverse cellular contexts.


2019 ◽  
Author(s):  
Anand Banerjee ◽  
Neil Adames ◽  
Jean Peccoud ◽  
John J. Tyson

AbstractTo divide replicated chromosomes equally between daughter cells kinetochores must attach to microtubules emanating from opposite poles of the mitotic spindle. Two mechanisms, namely, error correction and ‘spindle assembly checkpoint’ work together to facilitate this process. The error correction mechanism recognizes and detaches erroneous kinetochore-microtubule attachments, and the spindle assembly checkpoint delays the onset of anaphase until all the kinetochores are properly attached. Kinases and phosphatases at the kinetochore play a key role in proper functioning of these two mechanisms. Here we present a stochastic model to study how the opposing activities of kinases and phosphatases at the kinetochore affect error correction of kinetochore-microtubule attachments and checkpoint signaling in budding yeast, Saccharomyces cerevisiae. We show that error correction and biorientation of chromosomes occurs efficiently when the ratio between kinase activity of Ipl1 and the activity of an opposing phosphatase is a constant (balance point), and derive an approximate analytical formula that defines the balance point. Analysis of the coupling of the spindle assembly checkpoint signal to error correction shows that its strength remains high when the Ipl1 activity is equal to (or larger than) the value specified by the balance point, and the activity of another kinase, Mps1, is much larger (approximately 30 times larger) than its opposing phosphatase (PP1). We also find that the geometrical orientation of sister chromatids does not significantly improve the probability of their reaching biorientation, which depends entirely on Ipl1-dependent microtubule detachment.Author summaryThe kinetochore, the master regulator of chromosome segregation, integrates signals from different chromosome attachment states to generate an appropriate response, like the destabilization of erroneous kinetochore-microtubule attachments, stabilization of correct attachments, maintenance of the spindle assembly checkpoint signal until all kinetochores are properly attached, and finally silencing of checkpoint when biorientation is achieved. At a molecular level the job is carried out by kinases and phosphatases. The complexity of the interactions between these kinases and phosphatases makes intuitive analysis of the control network impossible, and a systems-level model is needed to put experimental information together and to generate testable hypotheses. Here we present such a model for the process of error correction and its coupling to the spindle assembly checkpoint in budding yeast. Using the model, we characterize the balance between kinase and phosphatase activities required for removing erroneous attachments and then establishing correct stable attachments between kinetochore and microtubule. We also analyze how the balance affects the strength of the spindle assembly checkpoint signal.


Sign in / Sign up

Export Citation Format

Share Document