cell cycle checkpoints
Recently Published Documents


TOTAL DOCUMENTS

440
(FIVE YEARS 109)

H-INDEX

70
(FIVE YEARS 6)

Cancers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 262
Author(s):  
Ntlotlang Mokgautsi ◽  
Yu-Cheng Kuo ◽  
Sung-Ling Tang ◽  
Feng-Cheng Liu ◽  
Shiang-Jiun Chen ◽  
...  

Current anticancer treatments are inefficient against glioblastoma multiforme (GBM), which remains one of the most aggressive and lethal cancers. Evidence has shown the presence of glioblastoma stem cells (GSCs), which are chemoradioresistant and associated with high invasive capabilities in normal brain tissues. Moreover, accumulating studies have indicated that radiotherapy contributes to abnormalities in cell cycle checkpoints, including the G1/S and S phases, which may potentially lead to resistance to radiation. Through computational simulations using bioinformatics, we identified several GBM oncogenes that are involved in regulating the cell cycle. Cyclin B1 (CCNB1) is one of the cell cycle-related genes that was found to be upregulated in GBM. Overexpression of CCNB1 was demonstrated to be associated with higher grades, proliferation, and metastasis of GBM. Additionally, increased expression levels of CCNB1 were reported to regulate activation of mitogen-activated protein kinase 7 (MAPK7) in the G2/M phase, which consequently modulates mitosis; additionally, in clinical settings, MAPK7 was demonstrated to promote resistance to temozolomide (TMZ) and poor patient survival. Therefore, MAPK7 is a potential novel drug target due to its dysregulation and association with TMZ resistance in GBM. Herein, we identified MAPK7/extracellular regulated kinase 5 (ERK5) genes as being overexpressed in GBM tumors compared to normal tissues. Moreover, our analysis revealed increased levels of the cell division control protein homolog (CDC42), a protein which is also involved in regulating the cell cycle through the G1 phase in GBM tissues. This therefore suggests crosstalk among CCNB1/CDC42/MAPK7/cluster of differentiation 44 (CD44) oncogenic signatures in GBM through the cell cycle. We further evaluated a newly synthesized small molecule, SJ10, as a potential target agent of the CCNB1/CDC42/MAPK7/CD44 genes through target prediction tools and found that SJ10 was indeed a target compound for the above-mentioned genes; in addition, it displayed inhibitory activities against these oncogenes as observed from molecular docking analysis.


Cells ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 138
Author(s):  
Devasahayam Arokia Balaya Rex ◽  
Yashwanth Subbannayya ◽  
Prashant Kumar Modi ◽  
Akhina Palollathil ◽  
Lathika Gopalakrishnan ◽  
...  

Interleukin-33 (IL-33), a member of the IL-1 superfamily cytokines, is an endogenous danger signal and a nuclear-associated cytokine. It is one of the essential mediators of both innate and adaptive immune responses. Aberrant IL-33 signaling has been demonstrated to play a defensive role against various infectious and inflammatory diseases. Although the signaling responses mediated by IL-33 have been previously reported, the temporal signaling dynamics are yet to be explored. To this end, we applied quantitative temporal phosphoproteomics analysis to elucidate pathways and proteins induced by IL-33 in THP-1 monocytes. Employing a TMT labeling-based quantitation and titanium dioxide (TiO2)-based phosphopeptide enrichment strategy followed by mass spectrometry analysis, we identified and quantified 9448 unique phosphopeptides corresponding to 3392 proteins that showed differential regulation. Of these, 171 protein kinases, 60 phosphatases and 178 transcription factors were regulated at different phases of IL-33 signaling. In addition to the confirmed activation of canonical signaling modules including MAPK, NFκB, PI3K/AKT modules, pathway analysis of the time-dependent phosphorylation dynamics revealed enrichment of several cellular processes, including leukocyte adhesion, response to reactive oxygen species, cell cycle checkpoints, DNA damage and repair pathways. The detailed quantitative phosphoproteomic map of IL-33 signaling will serve as a potentially useful resource to study its function in the context of inflammatory and pathological conditions.


2021 ◽  
Author(s):  
Wouter Huiting ◽  
Alejandra Duque-Jaramillo ◽  
Renée Seinstra ◽  
Harm Kampinga ◽  
Ellen Nollen ◽  
...  

To maintain genome integrity, cells rely on a complex system of DNA repair pathways and cell cycle checkpoints, together referred to as the DNA damage response (DDR). Impairments in DDR pathways are linked to cancer, but also to a wide range of degenerative processes, frequently including progressive neuropathy and accelerated aging. How defects in mechanistically distinct DDR pathways can drive similar degenerative phenotypes is not understood. Here we show that defects in various DDR components are linked to a loss of protein homeostasis in Caenorhabditis elegans. Prolonged silencing of atm-1, brc-1 or ung-1, central components in respectively checkpoint signaling, double strand break repair and base excision repair enhances the global aggregation of proteins occurring in adult animals, and accelerates polyglutamine protein aggregation in a model for neurodegenerative diseases. Overexpression of the molecular chaperone HSP-16.2 prevents enhanced protein aggregation in atm-1, brc-1 or ung-1-compromised animals. Strikingly, rebalancing protein homeostasis with HSP-16.2 almost completely rescues age-associated impaired motor function in these animals as well. This reveals that the consequences of a loss of atm-1, brc-1 or ung-1 converge on an impaired protein homeostasis to cause degeneration. These findings indicate that a loss of protein homeostasis is a crucial downstream consequence of DNA repair defects, and thereby provide an attractive novel framework for understanding the broad link between DDR defects and degenerative processes.


2021 ◽  
Author(s):  
Holly Matthews ◽  
Jennifer McDonald ◽  
Francis Isidore G. Totanes ◽  
Catherine J Merrick

Malaria parasites undergo a single phase of sexual reproduction in their complex lifecycle, during which they cycle between mosquito and vertebrate hosts. Sexual reproduction occurs only at the point when parasites move into the mosquito host. It involves specialised, sexually committed cells called gametocytes, which develop very rapidly into mature gametes and then mate inside the mosquito midgut. The gamete development process is unique, involving unprecedentedly fast replication and cell division to produce male gametes. A single male gametocyte replicates its ~23Mb genome three times over to produce 8 genomes, segregates these into newly-assembled flagellated gamete cells and releases them to seek out female gametes, all within ~15 minutes. Here, for the first time, we use fluorescent labelling of de novo DNA synthesis to follow this process at the whole-cell and single-molecule levels, yielding several novel observations. Firstly, we confirm that no DNA replication occurs before gametogenesis is triggered, although the origin recognition complex protein Orc1 is abundant even in immature gametocytes. Secondly, between repeated rounds of DNA replication there is no detectable karyokinesis - in contrast to the repeated replicative rounds that occur in asexual schizonts. Thirdly, cytokinesis is clearly uncoupled from DNA replication, and can occur even if replication fails, implying a lack of cell cycle checkpoints. Finally the single-molecule dynamics of DNA replication are entirely different from those in asexual schizonts.


2021 ◽  
Vol 10 (24) ◽  
pp. 5930
Author(s):  
Javier Martín-López ◽  
Consuelo Pérez-Rico ◽  
Selma Benito-Martínez ◽  
Bárbara Pérez-Köhler ◽  
Julia Buján ◽  
...  

Pterygium is a benign fibrovascular lesion of the bulbar conjunctiva with frequent involvement of the corneal limbus. Its pathogenesis has been mainly attributed to sun exposure to ultraviolet-B radiation. Obtained evidence has shown that it is a complex and multifactorial process which involves multiple mechanisms such as oxidative stress, dysregulation of cell cycle checkpoints, induction of inflammatory mediators and growth factors, angiogenic stimulation, extracellular matrix (ECM) disorders, and, most likely, viruses and hereditary changes. In this review, we aim to collect all authors’ experiences and our own, with respect to the study of fibroelastic ECM of pterygium. Collagen and elastin are intrinsic indicators of physiological and pathological states. Here, we focus on an in-depth analysis of collagen (types I and III), as well as the main constituents of elastic fibers (tropoelastin (TE), fibrillins (FBNs), and fibulins (FBLNs)) and the enzymes (lysyl oxidases (LOXs)) that carry out their assembly or crosslinking. All the studies established that changes in the fibroelastic ECM occur in pterygium, based on the following facts: An increase in the synthesis and deposition of an immature form of collagen type III, which showed the process of tissue remodeling. An increase in protein levels in most of the constituents necessary for the development of elastic fibers, except FBLN4, whose biological roles are critical in the binding of the enzyme LOX, as well as FBN1 for the development of stable elastin. There was gene overexpression of TE, FBN1, FBLN5, and LOXL1, while the expression of LOX and FBLN2 and -4 remained stable. In conclusion, collagen and elastin, as well as several constituents involved in elastic fiber assembly are overexpressed in human pterygium, thus, supporting the hypothesis that there is dysregulation in the synthesis and crosslinking of the fibroelastic component, constituting an important pathogenetic mechanism for the development of the disease.


Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6215
Author(s):  
David King ◽  
Harriet E. D. Southgate ◽  
Saskia Roetschke ◽  
Polly Gravells ◽  
Leona Fields ◽  
...  

Despite intensive high-dose multimodal therapy, high-risk neuroblastoma (NB) confers a less than 50% survival rate. This study investigates the role of replication stress in sensitivity to inhibition of Ataxia telangiectasia and Rad3-related (ATR) in pre-clinical models of high-risk NB. Amplification of the oncogene MYCN always imparts high-risk disease and occurs in 25% of all NB. Here, we show that MYCN-induced replication stress directly increases sensitivity to the ATR inhibitors VE-821 and AZD6738. PARP inhibition with Olaparib also results in replication stress and ATR activation, and sensitises NB cells to ATR inhibition independently of MYCN status, with synergistic levels of cell death seen in MYCN expressing ATR- and PARP-inhibited cells. Mechanistically, we demonstrate that ATR inhibition increases the number of persistent stalled and collapsed replication forks, exacerbating replication stress. It also abrogates S and G2 cell cycle checkpoints leading to death during mitosis in cells treated with an ATR inhibitor combined with PARP inhibition. In summary, increased replication stress through high MYCN expression, PARP inhibition or chemotherapeutic agents results in sensitivity to ATR inhibition. Our findings provide a mechanistic rationale for the inclusion of ATR and PARP inhibitors as a potential treatment strategy for high-risk NB.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7198
Author(s):  
Adalberto Merighi ◽  
Nadia Gionchiglia ◽  
Alberto Granato ◽  
Laura Lossi

The γ phosphorylated form of the histone H2AX (γH2AX) was described more than 40 years ago and it was demonstrated that phosphorylation of H2AX was one of the first cellular responses to DNA damage. Since then, γH2AX has been implicated in diverse cellular functions in normal and pathological cells. In the first part of this review, we will briefly describe the intervention of H2AX in the DNA damage response (DDR) and its role in some pivotal cellular events, such as regulation of cell cycle checkpoints, genomic instability, cell growth, mitosis, embryogenesis, and apoptosis. Then, in the main part of this contribution, we will discuss the involvement of γH2AX in the normal and pathological central nervous system, with particular attention to the differences in the DDR between immature and mature neurons, and to the significance of H2AX phosphorylation in neurogenesis and neuronal cell death. The emerging picture is that H2AX is a pleiotropic molecule with an array of yet not fully understood functions in the brain, from embryonic life to old age.


2021 ◽  
Vol 8 ◽  
Author(s):  
Rongjia Su ◽  
Yuan Liu ◽  
Xiaomei Wu ◽  
Jiangdong Xiang ◽  
Xiaowei Xi

Background: The homologous recombination (HR) pathway defects in cancers induced abrogation of cell cycle checkpoints, resulting in the accumulation of DNA damage, mitotic catastrophe, and cell death. Cancers with BRCA1/2 loss and other accumulation of similar genomic scars resulting in HRD displayed increased sensitivity to chemotherapy. Our study aimed to explore HRD score genetic mechanisms and subsequent clinical outcomes in human cancers, especially ovarian cancer.Methods: We analyzed TCGA data of HRD score in 33 cancer types and evaluated HRD score distribution and difference among tumor stages and between primary and recurrent tumor tissues. A weighted gene co-expression network analysis (WGCNA) was performed to identify highly correlated genes representing essential modules contributing to the HRD score and distinguish the hub genes and significant pathways. We verified HRD status predicting roles in patients’ overall survival (OS) with univariate and multivariate Cox regression analyses and built the predicting model for patient survival.Results: We found that the HRD score increased with the rise in tumor stage, except for stage IV. The HRD score tended to grow up higher in recurrent tumor tissue than in their primary counterparts (p = 0.083). We constructed 15 co-expression modules with WGCNA, identified co-expressed genes and pathways impacting the HRD score, and concluded that the HRD score was tightly associated with tumor cells replication and proliferation. A combined HRD score ≥42 was associated with shorter OS in 33 cancer types (HR = 1.010, 95% CI: 1.008–1.011, p < 0.001). However, in ovarian cancer, which ranked the highest HRD score among other cancers, HRD ≥42 cohort was significantly associated with longer OS (HR = 0.99, 95% CI: 0.98–0.99, p < 0.0001). We also built a predicting model for 3 and 5 years survival in HGSC patients.Conclusion: A quantitative HRD score representing the accumulated genomic scars was dynamically increasing in proliferating tumor cells since the HRD score was tightly correlated to tumor cell division and replication. We highlighted HRD score biomarker role in prognosis prediction of ovarian cancer.


2021 ◽  
Vol 38 (12) ◽  
Author(s):  
Li Su ◽  
Jicheng Zhang ◽  
Xinglong Zhang ◽  
Lei Zheng ◽  
Zhifa Zhu

AbstractGallbladder cancer (GBC), the most common malignancy in the biliary tract, is highly lethal malignant due to seldomly specific symptoms in the early stage of GBC. This study aimed to identify exosome-derived miRNAs mediated competing endogenous RNAs (ceRNA) participant in GBC tumorigenesis. A total of 159 differentially expressed miRNAs (DEMs) was identified as exosome-derived miRNAs, contains 34 upregulated exo-DEMs and 125 downregulated exo-DEMs based on the expression profiles in GBC clinical samples downloaded from the Gene Expression Omnibus database with the R package. Among them, 2 up-regulated exo-DEMs, hsa-miR-125a-3p and hsa-miR-4647, and 5 down-regulated exo-DEMs, including hsa-miR-29c-5p, hsa-miR-145a-5p, hsa-miR-192-5p, hsa-miR-194-5p, and hsa-miR-338-3p, were associated with the survival of GBC patients. Results of the gene set enrichment analysis showed that the cell cycle-related pathways were activated in GBC tumor tissues, mainly including cell cycle, M phase, and cell cycle checkpoints. Furthermore, the dysregulated ceRNA network was constructed based on the lncRNA-miRNA-mRNA interactions using miRDB, TargetScan, miRTarBase, miRcode, and starBase v2.0., consisting of 27 lncRNAs, 6 prognostic exo-DEMs, and 176 mRNAs. Together with prognostic exo-DEMs, the STEAP3-AS1/hsa-miR-192-5p/MAD2L1 axis was identified, suggesting lncRNA STEAP3-AS1, might as a sponge of exosome-derived hsa-miR-192-5p, modulates cell cycle progression via affecting MAD2L1 expression in GBC tumorigenesis. In addition, the biological functions of genes in the ceRNA network were also annotated by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Our study promotes exploration of the molecular mechanisms associated with tumorigenesis and provide potential targets for GBC diagnosis and treatment.


2021 ◽  
Author(s):  
Shuang Wu ◽  
Yuan Cao ◽  
Senyuan Luo ◽  
Sancheng Cao ◽  
Qiao Li ◽  
...  

Abstract Background : Mediator complex subunit 8 ( MED8 ) encodes a subunit of the mediator complex ( MED ), which is critical for transcription. MED8 is highly expressed in some tumours and is associated with a poor prognosis. However, correlations between MED8 and clinical features of hepatocellular carcinoma (HCC) have not been reported. Results: A univariate analysis showed that high MED8 expression predicts poor overall survival (HR: 2.495; 95% confidence interval (CI) 1.740, 3.578; P < 0.001). A multivariate regression analysis showed that high MED8 (HR: 3.032 (1.817, 5.060); P < 0.001) expression and M stage (HR=4.075 (1.179-14.091) for M1 vs. M0, P=0.026) are independent prognostic indicator of poor overall survival in patients with HCC. The areas under the curve (AUC) for receiver operating characteristic (ROC) curves were used to describe the prognostic value of MED8 (AUC: 0.905 (0.849, 0.941)). Gene Set Enrichment Analysis (GSEA) and Immune infiltration Analysis were applied to reveal significant enrichment differences among TCGA data. A functional analysis showed that the cell cycle checkpoints, mitotic G2-G2–M phases, transcriptional regulation by TP53, and regulation of TP53 activity were significantly enriched in DEGs associated with high MED8 expression. Th2 cells were positively correlated with MED8 expression. Conclusions: MED8 predicts poor prognosis in HCC, potentially via the regulation of the cell cycle regulation and Th2 cells. Key words: Mediator complex subunit 8, Mediator , hepatocellular carcinoma, prognosis, diagnostic biomarker


Sign in / Sign up

Export Citation Format

Share Document