scholarly journals LET-413/Erbin acts as a RAB-5 effector to promote RAB-10 activation during endocytic recycling

2017 ◽  
Vol 217 (1) ◽  
pp. 299-314 ◽  
Author(s):  
Hang Liu ◽  
Shimin Wang ◽  
Weijian Hang ◽  
Jinghu Gao ◽  
Wenjuan Zhang ◽  
...  

RAB-10/Rab10 is a master regulator of endocytic recycling in epithelial cells. To better understand the regulation of RAB-10 activity, we sought to identify RAB-10(GDP)–interacting proteins. One novel RAB-10(GDP)–binding partner that we identified, LET-413, is the Caenorhabditis elegans homologue of Scrib/Erbin. Here, we focus on the mechanistic role of LET-413 in the regulation of RAB-10 within the C. elegans intestine. We show that LET-413 is a RAB-5 effector and colocalizes with RAB-10 on endosomes, and the overlap of LET-413 with RAB-10 is RAB-5 dependent. Notably, LET-413 enhances the interaction of DENN-4 with RAB-10(GDP) and promotes DENN-4 guanine nucleotide exchange factor activity toward RAB-10. Loss of LET-413 leads to cytosolic dispersion of the RAB-10 effectors TBC-2 and CNT-1. Finally, we demonstrate that the loss of RAB-10 or LET-413 results in abnormal overextensions of lateral membrane. Hence, our studies indicate that LET-413 is required for DENN-4–mediated RAB-10 activation, and the LET-413–assisted RAB-5 to RAB-10 cascade contributes to the integrity of C. elegans intestinal epithelia.

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1788 ◽  
Author(s):  
Angika Basant ◽  
Michael Glotzer

Cytokinesis in metazoan cells is mediated by an actomyosin-based contractile ring that assembles in response to activation of the small GTPase RhoA. The guanine nucleotide exchange factor that activates RhoA during cytokinesis, ECT-2, is highly regulated. In most metazoan cells, with the notable exception of the early Caenorhabditis elegans embryo, RhoA activation and furrow ingression require the centralspindlin complex. This exception is due to the existence of a parallel pathway for RhoA activation in C. elegans. Centralspindlin contains CYK-4 which contains a predicted Rho family GTPase-activating protein (GAP) domain. The function of this domain has been the subject of considerable debate. Some publications suggest that the GAP domain promotes RhoA activation (for example, Zhang and Glotzer, 2015; Loria, Longhini and Glotzer, 2012), whereas others suggest that it functions to inactivate the GTPase Rac1 (for example, Zhuravlev et al., 2017). Here, we review the mechanisms underlying RhoA activation during cytokinesis, primarily focusing on data in C. elegans. We highlight the importance of considering the parallel pathway for RhoA activation and detailed analyses of cyk-4 mutant phenotypes when evaluating the role of the GAP domain of CYK-4.


Sign in / Sign up

Export Citation Format

Share Document