scholarly journals A GAP that Divides

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1788 ◽  
Author(s):  
Angika Basant ◽  
Michael Glotzer

Cytokinesis in metazoan cells is mediated by an actomyosin-based contractile ring that assembles in response to activation of the small GTPase RhoA. The guanine nucleotide exchange factor that activates RhoA during cytokinesis, ECT-2, is highly regulated. In most metazoan cells, with the notable exception of the early Caenorhabditis elegans embryo, RhoA activation and furrow ingression require the centralspindlin complex. This exception is due to the existence of a parallel pathway for RhoA activation in C. elegans. Centralspindlin contains CYK-4 which contains a predicted Rho family GTPase-activating protein (GAP) domain. The function of this domain has been the subject of considerable debate. Some publications suggest that the GAP domain promotes RhoA activation (for example, Zhang and Glotzer, 2015; Loria, Longhini and Glotzer, 2012), whereas others suggest that it functions to inactivate the GTPase Rac1 (for example, Zhuravlev et al., 2017). Here, we review the mechanisms underlying RhoA activation during cytokinesis, primarily focusing on data in C. elegans. We highlight the importance of considering the parallel pathway for RhoA activation and detailed analyses of cyk-4 mutant phenotypes when evaluating the role of the GAP domain of CYK-4.

2008 ◽  
Vol 19 (1) ◽  
pp. 8-16 ◽  
Author(s):  
Masamitsu Kanada ◽  
Akira Nagasaki ◽  
Taro Q.P. Uyeda

Some mammalian cells are able to divide via both the classic contractile ring-dependent method (cytokinesis A) and a contractile ring-independent, adhesion-dependent method (cytokinesis B). Cytokinesis A is triggered by RhoA, which, in HeLa cells, is activated by the guanine nucleotide-exchange factor Ect2 localized at the central spindle and equatorial cortex. Here, we show that in HT1080 cells undergoing cytokinesis A, Ect2 does not localize in the equatorial cortex, though RhoA accumulates there. Moreover, Ect2 depletion resulted in only modest multinucleation of HT1080 cells, enabling us to establish cell lines in which Ect2 was constitutively depleted. Thus, RhoA is activated via an Ect2-independent pathway during cytokinesis A in HT1080 cells. During cytokinesis B, Ect2-depleted cells showed narrower accumulation of RhoA at the equatorial cortex, accompanied by compromised pole-to-equator polarity, formation of ectopic lamellipodia in regions where RhoA normally would be distributed, and delayed formation of polar lamellipodia. Furthermore, C3 exoenzyme inhibited equatorial RhoA activation and polar lamellipodia formation. Conversely, expression of dominant active Ect2 in interphase HT1080 cells enhanced RhoA activity and suppressed lamellipodia formation. These results suggest that equatorial Ect2 locally suppresses lamellipodia formation via RhoA activation, which indirectly contributes to restricting lamellipodia formation to polar regions during cytokinesis B.


2017 ◽  
Vol 217 (1) ◽  
pp. 299-314 ◽  
Author(s):  
Hang Liu ◽  
Shimin Wang ◽  
Weijian Hang ◽  
Jinghu Gao ◽  
Wenjuan Zhang ◽  
...  

RAB-10/Rab10 is a master regulator of endocytic recycling in epithelial cells. To better understand the regulation of RAB-10 activity, we sought to identify RAB-10(GDP)–interacting proteins. One novel RAB-10(GDP)–binding partner that we identified, LET-413, is the Caenorhabditis elegans homologue of Scrib/Erbin. Here, we focus on the mechanistic role of LET-413 in the regulation of RAB-10 within the C. elegans intestine. We show that LET-413 is a RAB-5 effector and colocalizes with RAB-10 on endosomes, and the overlap of LET-413 with RAB-10 is RAB-5 dependent. Notably, LET-413 enhances the interaction of DENN-4 with RAB-10(GDP) and promotes DENN-4 guanine nucleotide exchange factor activity toward RAB-10. Loss of LET-413 leads to cytosolic dispersion of the RAB-10 effectors TBC-2 and CNT-1. Finally, we demonstrate that the loss of RAB-10 or LET-413 results in abnormal overextensions of lateral membrane. Hence, our studies indicate that LET-413 is required for DENN-4–mediated RAB-10 activation, and the LET-413–assisted RAB-5 to RAB-10 cascade contributes to the integrity of C. elegans intestinal epithelia.


Cells ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 224 ◽  
Author(s):  
Esther Tan ◽  
Bor Tang

The small GTPase, Rab7a, and the regulators of its GDP/GTP-binding status were shown to have roles in both endocytic membrane traffic and autophagy. Classically known to regulate endosomal retrograde transport and late endosome-lysosome fusion, earlier work has indicated a role for Rab7a in autophagosome-lysosome fusion as well as autolysosome maturation. However, as suggested by recent findings on PTEN-induced kinase 1 (PINK1)-Parkin-mediated mitophagy, Rab7a and its regulators are critical for the correct targeting of Atg9a-bearing vesicles to effect autophagosome formation around damaged mitochondria. This mitophagosome formation role for Rab7a is dependent on an intact Rab cycling process mediated by the Rab7a-specific guanine nucleotide exchange factor (GEF) and GTPase activating proteins (GAPs). Rab7a activity in this regard is also dependent on the retromer complex, as well as phosphorylation by the TRAF family-associated NF-κB activator binding kinase 1 (TBK1). Here, we discuss these recent findings and broadened perspectives on the role of the Rab7a network in PINK1-Parkin mediated mitophagy.


2017 ◽  
Vol 65 (8) ◽  
pp. 1089-1092 ◽  
Author(s):  
Pratap Karki ◽  
Anna A Birukova

The endothelial barrier function regulated by the cytoskeletal reorganizations has been implicated in the pathogenesis of multiple lung diseases including asthma, sepsis, edema, and acute respiratory distress syndrome. The extensive studies have established that activation of small GTPase Rac is a key mechanism in endothelial barrier protection but the role of microtubules-associated Rac in the endothelial functions remains poorly understood. With the emerging evidences that microtubules disassembly also plays a critical role in actin cytoskeleton remodeling leading to endothelial permeability, the knowledge on microtubules-mediated regulation of endothelial barrier is imperative to better understand the etiology of lung injuries as well as to develop novel therapeutics against these disorders. In this regard, our recent studies have revealed some novel aspects of microtubules-mediated regulation of endothelial barrier functions and unraveled a putative role of Rac-specific guanine nucleotide exchange factor Asef in mediating the barrier protective effects of hepatocyte growth factor. In this review, we will discuss the role of this novel Rac activator Asef in endothelial barrier protection and its regulation by microtubules.


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2089 ◽  
Author(s):  
Iker Lamas ◽  
Nathalie Weber ◽  
Sophie G. Martin

The small GTPase Cdc42 is critical for cell polarization in eukaryotic cells. In rod-shaped fission yeast Schizosaccharomyces pombe cells, active GTP-bound Cdc42 promotes polarized growth at cell poles, while inactive Cdc42-GDP localizes ubiquitously also along cell sides. Zones of Cdc42 activity are maintained by positive feedback amplification involving the formation of a complex between Cdc42-GTP, the scaffold Scd2, and the guanine nucleotide exchange factor (GEF) Scd1, which promotes the activation of more Cdc42. Here, we use the CRY2-CIB1 optogenetic system to recruit and cluster a cytosolic Cdc42 variant at the plasma membrane and show that this leads to its moderate activation also on cell sides. Surprisingly, Scd2, which binds Cdc42-GTP, is still recruited to CRY2-Cdc42 clusters at cell sides in individual deletion of the GEFs Scd1 or Gef1. We show that activated Cdc42 clusters at cell sides are able to recruit Scd1, dependent on the scaffold Scd2. However, Cdc42 activity is not amplified by positive feedback and does not lead to morphogenetic changes, due to antagonistic activity of the GTPase activating protein Rga4. Thus, the cell architecture is robust to moderate activation of Cdc42 at cell sides.


Sign in / Sign up

Export Citation Format

Share Document