Who’s in control? Principles of Rab GTPase activation in endolysosomal membrane trafficking and beyond

2021 ◽  
Vol 220 (9) ◽  
Author(s):  
Ann-Christin Borchers ◽  
Lars Langemeyer ◽  
Christian Ungermann

The eukaryotic endomembrane system consists of multiple interconnected organelles. Rab GTPases are organelle-specific markers that give identity to these membranes by recruiting transport and trafficking proteins. During transport processes or along organelle maturation, one Rab is replaced by another, a process termed Rab cascade, which requires at its center a Rab-specific guanine nucleotide exchange factor (GEF). The endolysosomal system serves here as a prime example for a Rab cascade. Along with endosomal maturation, the endosomal Rab5 recruits and activates the Rab7-specific GEF Mon1-Ccz1, resulting in Rab7 activation on endosomes and subsequent fusion of endosomes with lysosomes. In this review, we focus on the current idea of Mon1-Ccz1 recruitment and activation in the endolysosomal and autophagic pathway. We compare identified principles to other GTPase cascades on endomembranes, highlight the importance of regulation, and evaluate in this context the strength and relevance of recent developments in in vitro analyses to understand the underlying foundation of organelle biogenesis and maturation.

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Meredith L. Jenkins ◽  
Noah J. Harris ◽  
Udit Dalwadi ◽  
Kaelin D. Fleming ◽  
Daniel S. Ziemianowicz ◽  
...  

AbstractThe TRAnsport Protein Particle (TRAPP) complexes act as Guanine nucleotide exchange factors (GEFs) for Rab GTPases, which are master regulators of membrane trafficking in eukaryotic cells. In metazoans, there are two large multi-protein TRAPP complexes: TRAPPII and TRAPPIII, with the TRAPPII complex able to activate both Rab1 and Rab11. Here we present detailed biochemical characterisation of Rab-GEF specificity of the human TRAPPII complex, and molecular insight into Rab binding. GEF assays of the TRAPPII complex against a panel of 20 different Rab GTPases revealed GEF activity on Rab43 and Rab19. Electron microscopy and chemical cross-linking revealed the architecture of mammalian TRAPPII. Hydrogen deuterium exchange MS showed that Rab1, Rab11 and Rab43 share a conserved binding interface. Clinical mutations in Rab11, and phosphomimics of Rab43, showed decreased TRAPPII GEF mediated exchange. Finally, we designed a Rab11 mutation that maintained TRAPPII-mediated GEF activity while decreasing activity of the Rab11-GEF SH3BP5, providing a tool to dissect Rab11 signalling. Overall, our results provide insight into the GTPase specificity of TRAPPII, and how clinical mutations disrupt this regulation.


2005 ◽  
Vol 16 (7) ◽  
pp. 3273-3288 ◽  
Author(s):  
Greg J. Hermann ◽  
Lena K. Schroeder ◽  
Caroline A. Hieb ◽  
Aaron M. Kershner ◽  
Beverley M. Rabbitts ◽  
...  

The intestinal cells of Caenorhabditis elegans embryos contain prominent, birefringent gut granules that we show are lysosome-related organelles. Gut granules are labeled by lysosomal markers, and their formation is disrupted in embryos depleted of AP-3 subunits, VPS-16, and VPS-41. We define a class of gut granule loss (glo) mutants that are defective in gut granule biogenesis. We show that the glo-1 gene encodes a predicted Rab GTPase that localizes to lysosome-related gut granules in the intestine and that glo-4 encodes a possible GLO-1 guanine nucleotide exchange factor. These and other glo genes are homologous to genes implicated in the biogenesis of specialized, lysosome-related organelles such as melanosomes in mammals and pigment granules in Drosophila. The glo mutants thus provide a simple model system for the analysis of lysosome-related organelle biogenesis in animal cells.


2019 ◽  
Author(s):  
Urban Bezeljak ◽  
Hrushikesh Loya ◽  
Beata Kaczmarek ◽  
Timothy E. Saunders ◽  
Martin Loose

AbstractRab GTPases are the central regulators of intracellular traffic. Their function relies on a conformational change triggered by nucleotide exchange and hydrolysis. While this switch is well understood for an individual protein, how Rab GTPases collectively transition between states to generate a biochemical signal in space and time is unclear. Here, we combine in vitro reconstitution experiments with theoretical modeling to study a minimal Rab5 activation network. We find that positive feedback in this network gives rise to bistable switching of Rab5 activation and provide evidence that controlling the inactive population of Rab5 on the membrane can shape the network response. Together, our findings reveal new insights into the non-equilibrium properties and general principles of biochemical signaling networks underlying the spatiotemporal organization of the cell.


2012 ◽  
Vol 23 (14) ◽  
pp. 2723-2740 ◽  
Author(s):  
Steve Jean ◽  
Sarah Cox ◽  
Eric J. Schmidt ◽  
Fred L. Robinson ◽  
Amy Kiger

Cells rely on the coordinated regulation of lipid phosphoinositides and Rab GTPases to define membrane compartment fates along distinct trafficking routes. The family of disease-related myotubularin (MTM) phosphoinositide phosphatases includes catalytically inactive members, or pseudophosphatases, with poorly understood functions. We found that Drosophila MTM pseudophosphatase Sbf coordinates both phosphatidylinositol 3-phosphate (PI(3)P) turnover and Rab21 GTPase activation in an endosomal pathway that controls macrophage remodeling. Sbf dynamically interacts with class II phosphatidylinositol 3-kinase and stably recruits Mtm to promote turnover of a PI(3)P subpool essential for endosomal trafficking. Sbf also functions as a guanine nucleotide exchange factor that promotes Rab21 GTPase activation associated with PI(3)P endosomes. Of importance, Sbf, Mtm, and Rab21 function together, along with Rab11-mediated endosomal trafficking, to control macrophage protrusion formation. This identifies Sbf as a critical coordinator of PI(3)P and Rab21 regulation, which specifies an endosomal pathway and cortical control.


2017 ◽  
Vol 28 (6) ◽  
pp. 712-715 ◽  
Author(s):  
Suzanne R. Pfeffer

Several of the most important discoveries in the field of membrane traffic have come from studies of Rab GTPases by Marino Zerial and Peter Novick and their colleagues. Zerial was the first to discover that Rab GTPases represent identity markers for different membrane-bound compartments, and each Rab organizes a collection of specific effectors into function-specifying membrane microdomains to carry out receptor trafficking. Novick discovered that the order (and thus polarity) of Rab GTPases along the secretory and endocytic pathways are established by their specific, cognate guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), which partner with one Rab to regulate the subsequent- and prior-acting Rabs. Such so-called Rab cascades have evolved to establish domains that contain unique Rab proteins and their cognate effectors, which drive all steps of membrane trafficking. These findings deserve much broader recognition by the biomedical research community and are highlighted here, along with open questions that require serious attention for full understanding of the molecular basis of Rab GTPase-regulated membrane trafficking in eukaryotic cells.


2014 ◽  
Vol 25 (23) ◽  
pp. 3813-3822 ◽  
Author(s):  
Guangzuo Luo ◽  
Jian Zhang ◽  
Wei Guo

During membrane trafficking, vesicular carriers are transported and tethered to their cognate acceptor compartments before soluble N-ethylmaleimide–sensitive factor attachment protein (SNARE)-mediated membrane fusion. The exocyst complex was believed to target and tether post-Golgi secretory vesicles to the plasma membrane during exocytosis. However, no definitive experimental evidence is available to support this notion. We developed an ectopic targeting assay in yeast in which each of the eight exocyst subunits was expressed on the surface of mitochondria. We find that most of the exocyst subunits were able to recruit the other members of the complex there, and mistargeting of the exocyst led to secretion defects in cells. On the other hand, only the ectopically located Sec3p subunit is capable of recruiting secretory vesicles to mitochondria. Our assay also suggests that both cytosolic diffusion and cytoskeleton-based transport mediate the recruitment of exocyst subunits and secretory vesicles during exocytosis. In addition, the Rab GTPase Sec4p and its guanine nucleotide exchange factor Sec2p regulate the assembly of the exocyst complex. Our study helps to establish the role of the exocyst subunits in tethering and allows the investigation of the mechanisms that regulate vesicle tethering during exocytosis.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Lars Langemeyer ◽  
Ricardo Nunes Bastos ◽  
Yiying Cai ◽  
Aymelt Itzen ◽  
Karin M Reinisch ◽  
...  

Ras superfamily GTPase activation and inactivation occur by canonical nucleotide exchange and GTP hydrolysis mechanisms. Despite conservation of active-site residues, the Ras-related Rab GTPase activation pathway differs from Ras and between different Rabs. Analysis of DENND1-Rab35, Rabex-Rab5, TRAPP-Rab1 and DrrA-Rab1 suggests Rabs have the potential for activation by distinct GDP-release pathways. Conserved active-site residues in the Rab switch II region stabilising the nucleotide-free form differentiate these pathways. For DENND1-Rab35 and DrrA-Rab1 the Rab active-site glutamine, often mutated to create constitutively active forms, is involved in GEF mediated GDP-release. By contrast, in Rab5 the switch II aspartate is required for Rabex mediated GDP-release. Furthermore, Rab1 switch II glutamine mutants refractory to activation by DrrA can be activated by TRAPP, showing that a single Rab can be activated by more than one mechanistically distinct GDP-release pathway. These findings highlight plasticity in the activation mechanisms of closely related Rab GTPases.


2019 ◽  
Author(s):  
Sophie Vieweg ◽  
Katie Mulholland ◽  
Bastian Bräuning ◽  
Nitin Kachariya ◽  
Yu-Chiang Lai ◽  
...  

AbstractLoss of function mutations in the PINK1 kinase are causal for autosomal recessive Parkinson disease (PD) whilst gain of function mutations in the LRRK2 kinase cause autosomal dominant PD. PINK1 indirectly regulates the phosphorylation of a subset of Rab GTPases at a conserved Serine111 (Ser111) residue within the SF3 motif. Using genetic code expansion technologies we have produced stoichiometric Ser111-phosphorylated Rab8A revealing impaired interactions with its cognate guanine nucleotide exchange factor (GEF) and GTPase activating protein (GAP). In a screen for Rab8A kinases we identify TAK1 and MST3 kinases that can efficiently phosphorylate the Switch II residue Threonine72 (Thr72) in a similar manner as LRRK2. Strikingly we demonstrate that Ser111 phosphorylation negatively regulates the ability of LRRK2 but not MST3 or TAK1 to phosphorylate Thr72 in vitro and demonstrate an interplay of PINK1- and LRRK2-mediated phosphorylation of Rab8A in cells. Finally, we present the crystal structure of Ser111-phosphorylated Rab8A and NMR structure of Ser111-phosphorylated Rab1B that does not demonstrate any major changes suggesting that the phosphorylated SF3 motif may disrupt effector-Switch II interactions. Overall, we demonstrate antagonistic regulation between PINK1-dependent Ser111 phosphorylation and LRRK2-mediated Thr72 phosphorylation of Rab8A suggesting that small molecule activators of PINK1 may have therapeutic potential in patients harbouring LRRK2 mutations.


2011 ◽  
Vol 392 (3) ◽  
Author(s):  
Viktor Wixler ◽  
Ludmilla Wixler ◽  
Anika Altenfeld ◽  
Stephan Ludwig ◽  
Roger S. Goody ◽  
...  

Abstract The Mss4 (mammalian suppressor of yeast Sec4) is an evolutionarily highly conserved protein and is expressed in all mammalian tissues. Although its precise biological function is still elusive, it has been shown to associate with a subset of secretory Rab proteins (Rab1b, Rab3a, Rab8a, Rab10) and to possess a rather low guanine nucleotide exchange factor (GEF) activity towards them in vitro (Rab1, Rab3a and Rab8a). By screening a human placenta cDNA library with Mss4 as bait, we identified several Rab GTPases (Rab12, Rab13 and Rab18) as novel Mss4-binding Rab proteins. Only exocytic but no endocytic Rab GTPases were found in our search. The binding of Mss4 to Rab proteins was confirmed by direct yeast two-hybrid interaction, by co-immunoprecipitation from lysates of mammalian cells, by immunofluorescence colocalisation as well as by direct in vitro binding studies. Analysis of Mss4 catalytic activity towards different Rab substrates confirmed that it is a somewhat inefficient GEF. These data, together with our mutational analysis of Mss4-Rab binding capacity, support the already proposed idea that Mss4 functions rather as a chaperone for exocytic Rab GTPases than as a GEF.


2010 ◽  
Vol 21 (7) ◽  
pp. 1272-1281 ◽  
Author(s):  
Hui-Ju Yang ◽  
Aaron M. Neiman

Spore morphogenesis in yeast is driven by the formation of membrane compartments that initiate growth at the spindle poles during meiosis II and grow to encapsulate daughter nuclei. Vesicle docking complexes, called meiosis II outer plaques (MOPs), form on each meiosis II spindle pole body (SPB) and serve as sites of membrane nucleation. How the MOP stimulates membrane assembly is not known. Here, we report that SpSpo13, a component of the MOP in Schizosaccharomyces pombe, shares homology with the guanine nucleotide exchange factor (GEF) domain of the Saccharomyces cerevisiae Sec2 protein. ScSec2 acts as a GEF for the small Rab GTPase ScSec4, which regulates vesicle trafficking from the late-Golgi to the plasma membrane. A chimeric protein in which the ScSec2-GEF domain is replaced with SpSpo13 is capable of supporting the growth of a sec2Δ mutant. SpSpo13 binds preferentially to the nucleotide-free form of ScSec4 and facilitates nucleotide exchange in vitro. In vivo, a Spspo13 mutant defective in GEF activity fails to support membrane assembly. In vitro specificity experiments suggest that SpYpt2 is the physiological substrate of SpSpo13. These results demonstrate that stimulation of Rab-GTPase activity is a property of the S. pombe MOP essential for the initiation of membrane formation.


Sign in / Sign up

Export Citation Format

Share Document