scholarly journals MAMMALIAN CHROMOSOMES IN VITRO

1964 ◽  
Vol 23 (1) ◽  
pp. 53-62 ◽  
Author(s):  
T. C. Hsu

The complete DNA replication sequence of the entire complement of chromosomes in the Chinese hamster may be studied by using the method of continuous H3-thymidine labeling and the method of 5-fluorodeoxyuridine block with H3-thymidine pulse labeling as relief. Many chromosomes start DNA synthesis simultaneously at multiple sites, but the sex chromosomes (the Y and the long arm of the X) begin DNA replication approximately 4.5 hours later and are the last members of the complement to finish replication. Generally, chromosomes or segments of chromosomes that begin replication early complete it early, and those which begin late, complete it late. Many chromosomes bear characteristically late replicating regions. During the last hour of the S phase, the entire Y, the long arm of the X, and chromosomes 10 and 11 are heavily labeled. The short arm of chromosome 1, long arm of chromosome 2, distal portion of chromosome 6, and short arms of chromosomes 7, 8, and 9 are moderately labeled. The long arm of chromosome 1 and the short arm of chromosome 2 also have late replicating zones or bands. The centromeres of chromosomes 4 and 5, and occasionally a band on the short arm of the X are lightly labeled.

2008 ◽  
Vol 82 (18) ◽  
pp. 9056-9064 ◽  
Author(s):  
Sally Roberts ◽  
Sarah R. Kingsbury ◽  
Kai Stoeber ◽  
Gillian L. Knight ◽  
Phillip H. Gallimore ◽  
...  

ABSTRACT Productive infections by human papillomaviruses (HPVs) are restricted to nondividing, differentiated keratinocytes. HPV early proteins E6 and E7 deregulate cell cycle progression and activate the host cell DNA replication machinery in these cells, changes essential for virus synthesis. Productive virus replication is accompanied by abundant expression of the HPV E4 protein. Expression of HPV1 E4 in cells is known to activate cell cycle checkpoints, inhibiting G2-to-M transition of the cell cycle and also suppressing entry of cells into S phase. We report here that the HPV1 E4 protein, in the presence of a soluble form of the replication-licensing factor (RLF) Cdc6, inhibits initiation of cellular DNA replication in a mammalian cell-free DNA replication system. Chromatin-binding studies show that E4 blocks replication initiation in vitro by preventing loading of the RLFs Mcm2 and Mcm7 onto chromatin. HPV1 E4-mediated replication inhibition in vitro and suppression of entry of HPV1 E4-expressing cells into S phase are both abrogated upon alanine replacement of arginine 45 in the full-length E4 protein (E1^E4), implying that these two HPV1 E4 functions are linked. We hypothesize that HPV1 E4 inhibits competing host cell DNA synthesis in replication-activated suprabasal keratinocytes by suppressing licensing of cellular replication origins, thus modifying the phenotype of the infected cell in favor of viral genome amplification.


1991 ◽  
Vol 100 (4) ◽  
pp. 869-876 ◽  
Author(s):  
I.R. Kill ◽  
J.M. Bridger ◽  
K.H. Campbell ◽  
G. Maldonado-Codina ◽  
C.J. Hutchison

The sites of nascent DNA synthesis were compared with the distribution of the proliferating cell nuclear antigen (PCNA) in S-phase nuclei of human diploid fibroblasts (HDF) by two in vitro techniques. Firstly, proliferating fibroblasts growing in culture that had been synchronised at S-phase were microinjected with the thymidine analogue biotin-11-dUTP. The sites of incorporation of biotin into injected cells were compared with the distribution of PCNA by indirect immunofluorescence microscopy and laser scanning confocal microscopy (LSCM). In common with other studies, a progression of patterns for both biotin incorporation and PCNA localisation was observed. However, we did not always observe coincidence in these patterns, the pattern of biotin incorporation often resembling the expected, preceding distribution of PCNA. In nuclei in which the pattern of biotin incorporation appeared to be identical to the distribution of PCNA, LSCM revealed that not all of the sites of PCNA immunofluorescence were incorporating biotin at the same time. Secondly, nuclei which had been isolated from quiescent cultures of HDF were innoculated into cell-free extracts of Xenopus eggs which support DNA replication in vitro. Following innoculation into these extracts DNA replication was initiated in each nucleus. The sites of DNA synthesis were detected by biotin-11-dUTP incorporation and compared with the distribution of PCNA by indirect immunofluorescence. Only a single pattern of biotin incorporation and PCNA distribution was observed. PCNA accumulated at multiple discrete spots some 15 min before any biotin incorporation was observed. When biotin incorporation did occur, LSCM revealed almost complete coincidence between the sites of DNA synthesis and the sites at which PCNA was localised.


1976 ◽  
Vol 69 (3) ◽  
pp. 732-736 ◽  
Author(s):  
D Billen ◽  
A C Olson

We have developed a method for permeabilizing CHO cells to nucleotides under conditions which allow most cells to remain viable. Permeabilized cells can carry out ATP-dependent, semiconservative synthesis of DNA. The data are consistent with the continuation of DNA synthesis in those cells in S phase at the time of treatment, possibly limited to completion of replicon synthesis without new initiations.


1967 ◽  
Vol 33 (3) ◽  
pp. 497-509 ◽  
Author(s):  
Lawrence K. Schneider ◽  
William O. Rieke

DNA replication patterns were determined in the autosomes and sex chromosomes of phytohemagglutinin-stimulated lymphocytes from the opossum (Didelphis virginiana) by employing thymidine-3H labeling and high-resolution radioautography. Opossum chromosomes are desirable experimental material due to their large size, low number (2n = 22), and morphologically distinct sex chromosomes. The autosomes in both sexes began DNA synthesis synchronously and terminated replication asynchronously. One female X chromosome synthesized DNA throughout most of the S phase. Its homologue, however, began replication approximately 3.5 hr later. The two X's terminated DNA synthesis synchronously, slightly later than the autosomes. This form of late replication, in which one X chromosome begins DNA synthesis later than its homologue but completes replication at the same time as its homologue, is apparently unique in the opossum. The male X synthesized DNA throughout S while the Y chromosome exhibited late-replicating characteristics. The two sex chromosomes completed synthesis synchronously, slightly later than the autosomes. Grain counts were performed on all chromosomes to analyze trends in labeling intensity at hourly intervals of S. By analyzing the percent of labeled mitotic figures on radioautographs at various intervals after introduction of arginine-3H, chromosomal protein synthesis was found not to be restricted to any portion of interphase but to increase throughout S and into G2.


1998 ◽  
Vol 46 (10) ◽  
pp. 1203-1209 ◽  
Author(s):  
Françoise Jaunin ◽  
Astrid E. Visser ◽  
Dusan Cmarko ◽  
Jacob A. Aten ◽  
Stanislav Fakan

We describe a colloidal gold immunolabeling technique for electron microscopy which allows one to differentially visualize portions of DNA replicated during different periods of S-phase. This was performed by incorporating two halogenated deoxyuridines (IdUrd and CldUrd) into Chinese hamster cells and, after cell processing, by detecting them with selected antibodies. This technique, using in particular appropriate blocking solutions and also Tris buffer with a high salt concentration and 1% Tween-20, prevents nonspecific background and crossreaction of both antibodies. Controls such as digestion with DNase and specific staining of DNA with osmium ammine show that labeling corresponds well to replicated DNA. Different patterns of labeling distribution, reflecting different periods of DNA replication during S-phase, were characterized. Cells in early S-phase display a diffuse pattern of labeling with many spots, whereas cells in late S-phase show labeling confined to larger domains, often at the periphery of the nucleus or associated with the nucleolus. The good correlation between our observations and previous double labeling results in immunofluorescence also proved the technique to be reliable.


1986 ◽  
Vol 6 (12) ◽  
pp. 4594-4601
Author(s):  
J J Dermody ◽  
B E Wojcik ◽  
H Du ◽  
H L Ozer

We described a strategy which facilitates the identification of cell mutants which are restricted in DNA synthesis in a temperature-dependent manner. A collection of over 200 cell mutants temperature-sensitive for growth was isolated in established Chinese hamster cell lines (CHO and V79) by a variety of selective and nonselective techniques. Approximately 10% of these mutants were identified as ts DNA- based on differential inhibition of macromolecular synthesis at the restrictive temperature (39 degrees C) as assessed by incorporation of [3H]thymidine and [35S]methionine. Nine such mutants, selected for further study, demonstrated rapid shutoff of DNA replication at 39 degrees C. Infections with two classes of DNA viruses extensively dependent on host-cell functions for their replication were used to distinguish defects in DNA synthesis itself from those predominantly affecting other aspects of DNA replication. All cell mutants supported human adenovirus type 2 (Ad2) and mouse polyomavirus DNA synthesis at the permissive temperature. Five of the nine mutants (JB3-B, JB3-O, JB7-K, JB8-D, and JB11-J) restricted polyomavirus DNA replication upon transfection with viral sequences at 33 degrees C and subsequent shift to 39 degrees C either before or after the onset of viral DNA synthesis. Only one of these mutants (JB3-B) also restricted Ad2 DNA synthesis after virion infection under comparable conditions. No mutant was both restrictive for Ad2 and permissive for polyomavirus DNA synthesis at 39 degrees C. The differential effect of these cell mutants on viral DNA synthesis is expected to assist subsequent definition of the biochemical defect responsible.


1984 ◽  
Vol 4 (8) ◽  
pp. 1476-1482
Author(s):  
H Ariga

The replicating activity of several cloned DNAs containing putative origin sequences was examined in a cell-free extract that absolutely depends on simian virus 40 (SV40) T antigen promoting initiation of SV40 DNA replication in vitro. Of the three DNAs containing the human Alu family sequence (BLUR8), the origin of (Saccharomyces cerevisiae plasmid 2 micron DNA (pJD29), and the yeast autonomous replicating sequence (YRp7), only BLUR8 was active as a template. Replication in a reaction mixture with BLUR8 as a template was semiconservative and not primed by a putative RNA polymerase III transcript synthesized on the Alu family sequence in vitro. Pulse-chase experiments showed that the small-sized DNA produced in a short-term incubation was converted to full-length closed circular and open circular DNAs in alkaline sucrose gradients. DNA synthesis in extracts began in a region of the Alu family sequence and was inhibited 80% by the addition of anti-T serum. Furthermore, partially purified T antigen bound the Alu family sequence in BLUR8 by the DNA-binding immunoassay. These results suggest that SV40 T antigen recognizes the Alu family sequence, similar to the origin sequence of SV40 DNA, and initiates semiconservative DNA replication in vitro.


2000 ◽  
Vol 20 (11) ◽  
pp. 4169-4180 ◽  
Author(s):  
Alison J. Crowe ◽  
Julie L. Piechan ◽  
Ling Sang ◽  
Michelle C. Barton

ABSTRACT Aberrant expression of developmentally silenced genes, characteristic of tumor cells and regenerating tissue, is highly correlated with increased cell proliferation. By modeling this process in vitro in synthetic nuclei, we find that DNA replication leads to deregulation of established developmental expression patterns. Chromatin assembly in the presence of adult mouse liver nuclear extract mediates developmental stage-specific silencing of the tumor marker gene alpha-fetoprotein (AFP). Replication of silenced AFP chromatin in synthetic nuclei depletes sequence-specific transcription repressors, thereby disrupting developmentally regulated repression. Hepatoma-derived factors can target partial derepression of AFP, but full transcription activation requires DNA replication. Thus, unscheduled entry into S phase directly mediates activation of a developmentally silenced gene by (i) depleting developmental stage-specific transcription repressors and (ii) facilitating binding of transactivators.


Sign in / Sign up

Export Citation Format

Share Document