scholarly journals ONTOGENETIC CHANGES OF PROTEINS OF ENDOPLASMIC RETICULUM

1972 ◽  
Vol 52 (3) ◽  
pp. 733-742 ◽  
Author(s):  
Owen Black ◽  
Edward Bresnick

The proteins of the smooth and rough endoplasmic reticulum from fetal, immature, and adult male rats were compared after incorporation of two radioactively labeled precursors, 14C-labeled amino acids and δ-aminolevulinic acid-3H by means of gel electrophoresis. The labeling patterns indicated that protein components present in two major electrophoretic bands underwent significant synthesis in fetal tissue while three actively incorporating protein bands were noted in adult tissue. Although the uptake of the amino acids-14C decreased for the smooth and rough elements of the endoplasmic reticulum as a whole during liver development, the qualitative patterns were not significantly different in adult and fetal livers. The over-all incorporation (disintegrations per minute per milligram protein) of the heme precursor into the smooth and rough elements also did not change with development. However, a change was noted in the distributional electrophoretic patterns with development. The estimation of molecular weight (by disc electrophoresis) and the incorporation of the heme precursor suggested the similarity of the two major protein bands to cytochrome P-450 and cytochrome b5, components of the endoplasmic reticulum, thought to be involved in the mixed-function oxidase system. The evidence indicated that in fetal liver, at a time when the oxidase capability was low, the amino acid incorporation into these two protein groups was the same as in the adult. The incorporation of the heme moiety, however, was different, decreasing in the cytochrome b5 region and increasing in the cytochrome P-450 region during development. These results correlate with the increase in oxidase activity associated with liver development.

Author(s):  
R. W. Yaklich ◽  
E. L. Vigil ◽  
W. P. Wergin

The legume seed coat is the site of sucrose unloading and the metabolism of imported ureides and synthesis of amino acids for the developing embryo. The cell types directly responsible for these functions in the seed coat are not known. We recently described a convex layer of tissue on the inside surface of the soybean (Glycine max L. Merr.) seed coat that was termed “antipit” because it was in direct opposition to the concave pit on the abaxial surface of the cotyledon. Cone cells of the antipit contained numerous hypertrophied Golgi apparatus and laminated rough endoplasmic reticulum common to actively secreting cells. The initial report by Dzikowski (1936) described the morphology of the pit and antipit in G. max and found these structures in only 68 of the 169 seed accessions examined.


1974 ◽  
Vol 249 (21) ◽  
pp. 6701-6709
Author(s):  
Anthony Y.H. Lu ◽  
Susan B. West ◽  
Mary Vore ◽  
Dene Ryan ◽  
Wayne Levin

2014 ◽  
Vol 881-883 ◽  
pp. 766-775 ◽  
Author(s):  
Dan Wu ◽  
Wei Hong Min ◽  
Jing Sheng Liu ◽  
Li Fang ◽  
Hong Mei Li ◽  
...  

The functional properties of protein isolate and major protein fractions prepared from Changbai Mountain pine nuts were investigated. Albumin, globulin, glutelin, and protein isolates were obtained after the Osborne method and alkaline dissolution and acid precipitation, and protein contents of the fractions are 48.02%, 81.93%, 83.02%, and 89.69%, respectively. For the sulfhydryl contents, albumin is the highest, and glutelin is the lowest. In a disulphide bond, the protein isolate content is the highest with a value of 28.74 μmol/g, and the glutelin content is the lowest with the value of 13.46 μmol/g. For the four kinds of proteins, the essential amino acids in percentage of total amino acids are 31.13%, 34.22%, 30.30%, and 34.54%, respectively. The pH dependent protein solubility profile reveals that the minimum solubility is at pH 5.0, which corresponds to the isoelectric point. Protein isolate has the minimum water absorption capacity with a value of 0.59 ml/g. On the other hand, albumin has the minimum oil absorption capacity with a value of 2.11 ml/g. The emulsifying activity and stability and the foaming activity and stability increased with increasing concentration of four kinds of proteins. SDS-PAGE results showed that these four kinds of proteins have different molecules.


Sign in / Sign up

Export Citation Format

Share Document