scholarly journals BALD-2: a mutation affecting the formation of doublet and triplet sets of microtubules in Chlamydomonas reinhardtii.

1975 ◽  
Vol 66 (3) ◽  
pp. 480-491 ◽  
Author(s):  
U W Goodenough ◽  
H S StClair

The mutant strain bald-2 is unique among "flagellaless" strains of Chlamydomonas reinhardtii isolated to date, in that it possesses a mutant basal body: it is only capable of forming a ring of nine singlet microtubules, 180 nm in diameter, instead of the usual triplet basal body which is 225 nm in diameter. This singlet basal body lacks structural stability and the ability to associate with striated fiber material but retains two critical properties of basal bodies, namely, information specifying the length to which it should elongate and the ability to induce, albeit rarely, a flagellar transition region, a short, singlet-containing axoneme, and a specialized tunnel in the cell wall through which flagella normally emerge. The mutation seems to be specific for B- and C-microtubule synthesis or assembly since all other cytoplasmic sets of microtubules appear normal in numbers, orientation, and stability.

2003 ◽  
Vol 14 (7) ◽  
pp. 2999-3012 ◽  
Author(s):  
Eileen T. O'Toole ◽  
Thomas H. Giddings ◽  
J. Richard McIntosh ◽  
Susan K. Dutcher

Improved methods of specimen preparation and dual-axis electron tomography have been used to study the structure and organization of basal bodies in the unicellular alga Chlamydomonas reinhardtii. Novel structures have been found in both wild type and strains with mutations that affect specific tubulin isoforms. Previous studies have shown that strains lacking δ-tubulin fail to assemble the C-tubule of the basal body. Tomographic reconstructions of basal bodies from the δ-tubulin deletion mutant uni3-1 have confirmed that basal bodies contain mostly doublet microtubules. Our methods now show that the stellate fibers, which are present only in the transition zone of wild-type cells, repeat within the core of uni3-1 basal bodies. The distal striated fiber is incomplete in this mutant, rootlet microtubules can be misplaced, and multiflagellate cells have been observed. A suppressor of uni3-1, designated tua2-6, contains a mutation in α-tubulin. tua2-6; uni3-1 cells build both flagella, yet they retain defects in basal body structure and in rootlet microtubule positioning. These data suggest that the presence of specific tubulin isoforms in Chlamydomonas directly affects the assembly and function of both basal bodies and basal body-associated structures.


Planta ◽  
1991 ◽  
Vol 183 (1) ◽  
Author(s):  
J�rgen Voigt ◽  
Dieter Mergenhagen ◽  
Irmhild Wachholz ◽  
Elsbeth Manshard ◽  
Marianne Mix

1985 ◽  
Vol 101 (5) ◽  
pp. 1903-1912 ◽  
Author(s):  
R L Wright ◽  
J Salisbury ◽  
J W Jarvik

We have isolated a nucleus-basal body complex from Chlamydomonas reinhardtii. The complex is strongly immunoreactive to an antibody generated against a major protein constituent of isolated Tetraselmis striata flagellar roots (Salisbury, J. L., A. Baron, B. Surek, and M. Melkonian, J. Cell Biol., 99:962-970). Electrophoretic and immunoelectrophoretic analysis indicates that, like the Tetraselmis protein, the Chlamydomonas antigen consists of two acidic isoforms of approximately 20 kD. Indirect immunofluorescent staining of nucleus-basal body complexes reveals two major fibers in the connector region, one between each basal body and the nucleus. The nucleus is also strongly immunoreactive, with staining radiating around much of the nucleus from a region of greatest concentration at the connector pole. Calcium treatment causes shortening of the connector fibers and also movement of nuclear DNA towards the connector pole. Electron microscopic observation of negatively stained nucleus-basal body complexes reveals a cluster of approximately 6-nm filaments, suspected to represent the connector, between the basal bodies and nuclei. A mutant with a variable number of flagella, vfl-2-220, is defective with respect to the nucleus-basal body association. This observation encourages us to speculate that the nucleus-basal body union is important for accurate basal body localization within the cell and/or for accurate segregation of parental and daughter basal bodies at cell division. A physical association between nuclei and basal bodies or centrioles has been observed in a variety of algal, protozoan, and metazoan cells, although the nature of the association, in terms of both structure and function, has been obscure. We believe it likely that fibrous connectors homologous to those described here for Chlamydomonas are general features of centriole-bearing eucaryotic cells.


Genetics ◽  
1996 ◽  
Vol 142 (2) ◽  
pp. 651-654

Abstract In the paper by Linda L. Ehler, Jeffery A. Holmes and Susan K. Dutcher (Genetics  141:  945–960: November 1995) entitled “Loss of spatial control of the mitotic spindle apparatus in a Chlamydomonas reinhardtii mutant strain lacking basal bodies,” the half-tone figures printed poorly. They are reprinted below.


1975 ◽  
Vol 65 (1) ◽  
pp. 65-74 ◽  
Author(s):  
R R Gould

The assembly and composition of basal bodies was investigated in the single-celled, biflagellate green alga, Chlamydomonas reinhardtii, using the cell wall-less strain, cw15. In the presence of EDTA, both flagellar axonemes remained attached to their basal bodies while the entire basal body-axoneme complex was separated from the cell body, without cell lysis, by treatment with polyethylene glycol-400. The axonemes were then removed from the basal bodies in the absence of EDTA, leaving intact basal body pairs, free from particulate contamination from other regions of the cell. The isolated organelles produced several bands on sodium dodecyl sulfate-urea polyacrylamide gels, including two tubilin bands which co-electrophoresed with flagellar tubulin. The formation of probasal bodies was observed by electron microscopy of whole mount preparations. Synchronous cells were lysed, centrifuged onto carbon-coated grids, and either negatively stained or shadowed with platinum. The two probasal bodies of each cell appeared shortly after mitosis as thin "annuli," not visible in thin sections, each consisting of nine rudimentary triplet microtubules. Each annulus remained attached to one of the mature basal bodies by several filaments about 60 in diameter, and persisted throughout interphase until just before the next cell division. It then elongated into a mature organelle. The results revive the possibility of the nucleated assembly of basal bodies.


1983 ◽  
Vol 96 (6) ◽  
pp. 1697-1707 ◽  
Author(s):  
R L Wright ◽  
B Chojnacki ◽  
J W Jarvik

We describe a mutant of Chlamydomonas reinhardtii in which basal body associated striated fibers are absent or incomplete. Basal body spacing, angle, and relative rotational orientation are abnormal and extremely variable. Abnormal partitioning of cellular contents at cytokinesis is also evident. Mating, maintenance of flagellar length equality, and backward swimming response are normal. Genetic analysis indicates mutation of a new Mendelian gene--vfl-3--linked to the centromere of Chromosome VI.


2008 ◽  
Vol 19 (1) ◽  
pp. 262-273 ◽  
Author(s):  
Brian P. Piasecki ◽  
Matthew LaVoie ◽  
Lai-Wa Tam ◽  
Paul A. Lefebvre ◽  
Carolyn D. Silflow

Mutations in the UNI2 locus in Chlamydomonas reinhardtii result in a “uniflagellar” phenotype in which flagellar assembly occurs preferentially from the older basal body and ultrastructural defects reside in the transition zones. The UNI2 gene encodes a protein of 134 kDa that shares 20.5% homology with a human protein. Immunofluorescence microscopy localized the protein on both basal bodies and probasal bodies. The protein is present as at least two molecular-weight variants that can be converted to a single form with phosphatase treatment. Synthesis of Uni2 protein is induced during cell division cycles; accumulation of the phosphorylated form coincides with assembly of transition zones and flagella at the end of the division cycle. Using the Uni2 protein as a cell cycle marker of basal bodies, we observed migration of basal bodies before flagellar resorption in some cells, indicating that flagellar resorption is not required for mitotic progression. We observed the sequential assembly of new probasal bodies beginning at prophase. The uni2 mutants may be defective in the pathways leading to flagellar assembly and to basal body maturation.


2009 ◽  
Vol 20 (10) ◽  
pp. 2605-2614 ◽  
Author(s):  
Violaine Mottier-Pavie ◽  
Timothy L. Megraw

Cilia and flagella play multiple essential roles in animal development and cell physiology. Defective cilium assembly or motility represents the etiological basis for a growing number of human diseases. Therefore, how cilia and flagella assemble and the processes that drive motility are essential for understanding these diseases. Here we show that Drosophila Bld10, the ortholog of Chlamydomonas reinhardtii Bld10p and human Cep135, is a ubiquitous centriolar protein that also localizes to the spermatid basal body. Mutants that lack Bld10 assemble centrioles and form functional centrosomes, but centrioles and spermatid basal bodies are short in length. bld10 mutant flies are viable but male sterile, producing immotile sperm whose axonemes are deficient in the central pair of microtubules. These results show that Drosophila Bld10 is required for centriole and axoneme assembly to confer cilium motility.


1991 ◽  
Vol 113 (2) ◽  
pp. 339-346 ◽  
Author(s):  
D E Johnson ◽  
S K Dutcher

Linkage group XIX (also known as the UNI linkage group) in the green alga, Chlamydomonas reinhardtii, exhibits a number of unusual properties that have lead to the suggestion that it represents a basal body-associated chromosome. To begin a molecular analysis of this linkage group, we have identified DNA sequences from it and used them to determine the copy number of linkage group XIX within the cell. We find that linkage group XIX is present in the same copy number per cell as nuclear linkage groups in both haploid and diploid strains. We also find that the copy number of linkage group XIX is unchanged in mutants lacking basal bodies. We conclude that there is no convincing evidence that linkage group XIX localizes to the basal bodies of Chlamydomonas reinhardtii cells.


Sign in / Sign up

Export Citation Format

Share Document