scholarly journals Isolation and characterization of kinetoplast DNA from bloodstream form of Trypanosoma brucei.

1978 ◽  
Vol 76 (2) ◽  
pp. 293-309 ◽  
Author(s):  
A H Fairlamb ◽  
P O Weislogel ◽  
J H Hoeijmakers ◽  
P Borst

We have used restriction endonucleases PstI, EcoRI, HapII, HhaI, and S1 nuclease to demonstrate the presence of a large complex component, the maxi-circle, in addition to the major mini-circle component in kinetoplast DNA (kDNA) networks of Trypanosoma brucei (East African Trypanosomiasis Research Organization [EATRO] 427). Endonuclease PstI and S1 nuclease cut the maxi-circle at a single site, allowing its isolation in a linear form with a mol wt of 12.2 x 10(6), determined by electron microscopy. The other enzymes give multiple maxi-circle fragments, whose added mol wt is 12-13 x 10(6), determined by gel electrophoresis. The maxi-circle in another T. brucei isolate (EATRO 1125) yields similar fragments but appears to contain a deletion of about 0.7 x 10(6) daltons. Electron microscopy of kDNA shows the presence of DNA considerably longer than the mini-circle contour length (0.3 micron) either in the network or as loops extending from the edge. This long DNA never exceeds the maxi-circle length (6.3 microns) and is completely removed by digestion with endonuclease PstI. 5-10% of the networks are doublets with up to 40 loops of DNA clustered between the two halves of the mini-circle network and probably represent a division stage of the kDNA. Digestion with PstI selectively removes these loops without markedly altering the mini-circle network. We conclude that the long DNA in both single and double networks represents maxi-circles and that long tandemly repeated oligomers of mini-circles are (virtually) absent. kDNA from Trypanosoma equiperdum, a trypanosome species incapable of synthesizing a fully functional mitochondrion, contains single and double networks of dimensions similar to those from T. brucei but without any DNA longer than mini-circle contour length. We conclude that the maxi-circle of trypanosomes is the genetic equivalent of the mitochondrial DNA (mtDNA) of other organisms.

1995 ◽  
Vol 15 (12) ◽  
pp. 6794-6803 ◽  
Author(s):  
L R Carpenter ◽  
P T Englund

Kinetoplast DNA, the mitochondrial DNA of trypanosomatids, is composed of several thousand minicircles and a few dozen maxicircles, all of which are topologically interlocked in a giant network. We have studied the replication of maxicircle DNA, using electron microscopy to analyze replication intermediates from both Crithidia fasciculata and Trypanosoma brucei. Replication intermediates were stabilized against branch migration by introducing DNA interstrand cross-links in vivo with 4,5',8-trimethylpsoralen and UV radiation. Electron microscopy of individual maxicircles resulting from a topoisomerase II decatenation of kinetoplast DNA networks revealed intact maxicircle theta structures. Analysis of maxicircle DNA linearized by restriction enzyme cleavage revealed branched replication intermediates derived from theta structures. Measurements of the linearized branched molecules in both parasites indicate that replication initiates in the variable region (a noncoding segment characterized by repetitive sequences) and proceeds unidirectionally, clockwise on the standard map.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Chaturbhuj K. Saurabh ◽  
Asniza Mustapha ◽  
M. Mohd. Masri ◽  
A. F. Owolabi ◽  
M. I. Syakir ◽  
...  

Cellulose nanofibers (CNF) were isolated fromGigantochloa scortechiniibamboo fibers using sulphuric acid hydrolysis. This method was compared with pulping and bleaching process for bamboo fiber. Scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis were used to determine the properties of CNF. Structural analysis by FT-IR showed that lignin and hemicelluloses were effectively removed from pulp, bleached fibers, and CNF. It was found that CNF exhibited uniform and smooth morphological structures, with fiber diameter ranges from 5 to 10 nm. The percentage of crystallinity was significantly increased from raw fibers to cellulose nanofibers, microfibrillated, along with significant improvement in thermal stability. Further, obtained CNF were used as reinforcement material in epoxy based nanocomposites where tensile strength, flexural strength, and modulus of nanocomposites improved with the addition of CNF loading concentration ranges from 0 to 0.7%.


1985 ◽  
Vol 31 (2) ◽  
pp. 154-160 ◽  
Author(s):  
M. R. Barnard ◽  
S. C. Holt

The peptidoglycans from several Gram-negative and Gram-positive periodontal pathogens were isolated, purified, and characterized both morphologically and chemically. In addition, the effects of the mureolytic enzymes, lysozyme, M-1 N-acetyl-muramidase, and the AM-3 endopeptidase, on the peptidoglycans were examined. These enzymes were found to be highly effective in the degradation of the purified peptidoglycans; however, a Bacteroides capillus peptidoglycan–protein complex exhibited a greater resistance to these enzymes. Morphologically, the peptidoglycans consisted of large saccular sheets which, when viewed by scanning electron microscopy, contained numerous holes and tears. Chemically, the peptidoglycans consisted of muramic acid, glucosamine, alanine, glutamic acid, and meso-diaminopimelic acid (DAP). One Bacteroides species, Bacteroides gingivalis strain W, contained glycine and LL-DAP, suggestive of an indirectly cross-linked A3γ peptidoglycan.


2020 ◽  
Author(s):  
Aël Hardy ◽  
Vikas Sharma ◽  
Larissa Kever ◽  
Julia Frunzke

AbstractStreptomyces are well-known antibiotic producers, and are also characterized by a complex morphological differentiation. Streptomyces, like all bacteria, are confronted with the constant threat of phage predation, which in turn shapes bacterial evolution. However, despite significant sequencing efforts recently, relatively few phages infecting Streptomyces have been characterized compared to other genera. Here, we present the isolation and characterization of five novel Streptomyces phages. All five phages belong to the Siphoviridae family, based on their morphology as determined by transmission electron microscopy. Genome sequencing revealed that four of them were temperate phages, while one had a lytic lifestyle. Moreover, one of the newly sequenced phages shows very little homology to already described phages, highlighting the still largely untapped viral diversity. Altogether, this study expands the number of characterized phages of Streptomyces and sheds light on phage evolution and phage-host dynamics in Streptomyces.


2017 ◽  
Author(s):  
Anneliese Hoffmann ◽  
Sandro Käser ◽  
Martin Jakob ◽  
Simona Amodeo ◽  
Camille Peitsch ◽  
...  

AbstractIn almost all eukaryotes mitochondria maintain their own genome. Despite the discovery more than 50 years ago still very little is known about how the genome is properly segregated during cell division. The protozoan parasite Trypanosoma brucei contains a single mitochondrion with a singular genome the kinetoplast DNA (kDNA). Electron microscopy studies revealed the tripartite attachment complex (TAC) to physically connect the kDNA to the basal body of the flagellum and to ensure proper segregation of the mitochondrial genome via the basal bodies movement, during cell cycle. Using super-resolution microscopy we precisely localize each of the currently known unique TAC components. We demonstrate that the TAC is assembled in a hierarchical order from the base of the flagellum towards the mitochondrial genome and that the assembly is not dependent on the kDNA itself. Based on biochemical analysis the TAC consists of several non-overlapping subcomplexes suggesting an overall size of the TAC exceeding 2.8 mDa. We furthermore demonstrate that the TAC has an impact on mitochondrial organelle positioning however is not required for proper organelle biogenesis or segregation.Significance StatementMitochondrial genome replication and segregation are essential processes in most eukaryotic cells. While replication has been studied in some detail much less is known about the molecular machinery required distribute the replicated genomes. Using super-resolution microscopy in combination with molecular biology and biochemistry we show for the first time in which order the segregation machinery is assembled and that it is assembled de novo rather than in a semi conservative fashion in the single celled parasite Trypanosoma brucei. Furthermore, we demonstrate that the mitochondrial genome itself is not required for assembly to occur. It seems that the physical connection of the mitochondrial genome to cytoskeletal elements is a conserved feature in most eukaryotes, however the molecular components are highly diverse.Abbreviation(EZF)Exclusion zone filaments(ULF)Unilateral filament(TAC)tripartite attachment complex(OM)outer mitochondrial(IM)inner mitochondrial(BSF)bloodstream form(PCF)procyclic form(kDNA)kinetoplast DNA(gRNA)guide RNA(SBFSEM)Serial block face-scanning electron microscopy(Tet)tetracyclin(STED)Stimulated Emission Depletion


1986 ◽  
Vol 6 (8) ◽  
pp. 2950-2956 ◽  
Author(s):  
A Raibaud ◽  
G Buck ◽  
T Baltz ◽  
H Eisen

Variant surface glycoprotein (VSG) genes of African trypanosomes are expressed when they are inserted into one of several telomere-linked expression sites. We cloned and characterized an 11-kilobase (kb) DNA fragment located upstream of an expressed VSG gene. A DNA sequence of 1.8 kb that is located immediately upstream of the inserted VSG gene contains sequences homologous to the 76-base-pair repeats described as being upstream of VSG genes in Trypanosoma brucei (D. A. Campbell, M. P. Van Bree, and J. C. Boothroyd, Nucleic Acids Res. 12:2759-2774). There are no such sequences elsewhere in the 11-kb cloned region. Southern blot analysis using probes from the cloned region revealed multiple unlinked copies of the same or very similar regions. At least three of these are located near telomeres, and two have been shown to be used for the expression of known Trypanosoma equiperdum VSG genes. Like VSG genes, the upstream sequences themselves can be duplicated and deleted. The choice of expression site to be used by a duplicated VSG gene is nonrandom; the site used for expression of the parental VSG gene is strongly favored for use in the daughter variant. Furthermore, even when the parental expression site is not used, the VSG gene occupying it is replaced. Thus, an active expression site is a preferential target for gene conversion in the next variation event.


Sign in / Sign up

Export Citation Format

Share Document